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Note to the reader:

These lecture notes are a typed up version of Dr. Simone Noja’s handwritten notes from the course

“Mathematical Aspects of String Theory” he teached during the winter semester 2022/2023 at the

university of Heidelberg. The courses were meant as a mathematical supplement to the lectures in

String Theory held by Prof. Johannes Walcher during the same time. Please note that there are

probably a lot of typos everywhere!

A main reference is the textbook “Complex Geometry: An Introduction” by Daniel Huybrechts.

1 Elements of Complex Analysis

1.1 Elementary Characterisations

Definition 1 (Analytic Function). Let U ⊆ C be an open subset (in the complex topology). We say

that F : U → C is analytic in U if ∀z0 ∈ U ∃Bε(z0) such that F has a Taylor series expansion in

z − z0, i.e.

F (z) =
∞∑
n=0

an(z − z0)n with an ∈ C ∀n ∈ N0 (1)

converges uniformly and absolutely.

Remark. Representing Cn ∼= Rn ⊕ iRn one writes z = x + iy with (x, y) ∈ Rn ⊕ Rn. In particular

C ∋ z = x+ iy.

It follows that F : U → C can be considered as complex functions of two real variables:

F (z) = FC(x, y) = u(x, y) + iv(x, y) (2)

with u : UR → R and v : UR → R.

Definition 2 (Holomorphic Function). Let U ⊆ C be an open set. We say that F : U → C with

F (z) = u(x, y) + iv(x, y) is a holomorphic function if there are u, v ∈ C0
R such that they satisfy the

following system of PDE’s:

∂xu = ∂yv and ∂yu = −∂xv (3)

These are the Cauchy-Riemann-Equations.

Note. Requiring u, v ∈ C∞ is stronger than requiring the existence of partial derivatives so that

the Cauchy-Riemann-Equations make sense (Looman-Menchoff Theorem: no need for C∞ as C0 is

enough).
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Remark. Let T ∗
z Cn ∼= Cn ∼= R2n ∼= spanR{dxi, dyi}i=1,...,n. Then the complex basis is given by

T ∗
z Cn ∼= spanR{dzi, dz̄i} where one defines dzi := dxi + idyi and dz̄i := dxi − idyi.

Accordingly, one can give the dual basis of TzCn ∼= Cn ∼= R2n with ∂zi := 1
2(∂xi − i∂yi) and

∂z̄i := 1
2(∂xi + i∂yi).

Note that dzi, dz̄i and ∂zi , ∂z̄i are indeed dual to each other allowing to rewrite the Cauchy-

Riemann-Equations in a more compact fashion:

∂z̄f = 0 (4)

This follows directly form the definition and rewriting:

∂z̄f = 1
2(∂x + i∂y)(u(x, y) + iv(x, y)) = 0 ⇔ Cauchy-Riemann-Equations

Note (Holomorphic ⇔ Complex differentiable). It is possible to prove that a function is holomorphic

if and only if it is complex differentiable (in a neighbourhood of each point of its domain). Recall that

complex differentiability at z = z0 ∈ C means that the limit

lim
h→0

f(z + h)− f(z)
h

exists with h ∈ C. In particular, complex differentiability implies differentiability, but the converse is

not true.

Example 1. The function f(z) = z̄ ∈ C∞ is not complex differentiable!

Theorem 1 (Holomorphic ⇔ Analytic). Let U ⊆ C. Then F : U → C is holomorphic if and only if

it is analytic.

Proof. ’⇒’: Let F be holomorphic and let Bε(z0) ∈ U s.t. ∂Bε(z0) =: C with a positive orientation

and let z ∈ Bε(z0). We use the Cauchy Integral Theorem stating that in this setting, for all z ∈ Bε(z0)

one has

F (z) = 1
2πi

∮
C

F (w)
w − z

dw

But then we can proceed as follows:

F (z) = 1
2πi

∮
C
dw

F (w)
(w − z0)− (z − z0) = 1

2πi

∮
C
dw

F (w)
w − z0

Ç
1

1− z−z0
w−z0

å
= 1

2πi

∮
C
dw

F (w)
w − z0

∞∑
n=0

Å
z − z0
w − z0

ãn
= 1

2πi

∞∑
n=0

Å∮
C
dw

F (w)
(w − z0)n+1

ã
︸ ︷︷ ︸

=:αn

(z − z0)n

Note: it is subtle to prove that the series converges uniformly and absolutely on C and therefore one

can indeed exchange
∮
↔

∑. To this end, observe that

(i)
∣∣∣ F (w)
w−z0

∣∣∣ < M with M > 0 on C,
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(ii) For all w ∈ C exists an r ∈ R such that
∣∣∣ z−z0
w−z0

∣∣∣ ≤ r < 1,

implying
∣∣∣ (z−z0)n

(w−z0)n+1F (w)
∣∣∣ ≤ Mrn on C. That is, we use the Weierstrass ”M-test” to prove the

convergence.

’⇐’: Let F be analytic with Taylor series expansion F (z) = ∑∞
n=0 αn(z− z0)n for all z ∈ Bε(z0) ⊆ U .

We use the following generalisation of Cauchy’s Theorem for smooth functions:

F (z) = 1
2πi

∮
∂B

F (w)
w − z

dw +
∫
B
∂w̄F (w)dw ∧ dw̄

w − z

for all z ∈ Bε(z0) ⊆ C. Then, it is enough to observe the following facts:

(i) The partial sums {s0, s1, s2, . . . } where sn := ∑n
i=0 αi(z− z0)i satisfy Cauchy’s integral formula,

sn = 1
2πi

∮
∂B

Fn(w)
w−z dw near z0 (because ∂z̄(z − z0)n = 0).

(ii) By uniform convergence of the series, the same is true for F .

(iii) It follows that F (z) = 1
2πi

∮
∂Bε(z0)

F (w)
w−z dw.

(iv) Differentiation with ∂z̄ yields ∂z̄ F (w)
w−z = 0.

Thus, ∂z̄F = 0.

Remark. This proves that the the notions of analytic and holomorphic functions coincide. We will

mostly use the latter.

1.2 Fundamental Theorems in One Complex Variable

For a more precise treatment including proofs, see Dr. Kasten’s script “Funktionentheorie I” for

example.

Theorem 2 (Liouville’s Theorem). Let F : C→ C be holomorphic and bounded. Then F is constant.

Proof. First, we show the following lemma:

Lemma 1. Let F : U → C be holomorphic with U ⊆ C open and connected (domain). If F ′ = 0, then

F is constant on U .

Proof. We need to show that F (z0) = F (z1) for all z0, z1 ∈ U . Since U is a domain, it is path-

connected. Let γ : [0, 1] → U with γ(0) = z0 and γ(1) = z1 be a path. Then 0 =
∫
γ F

′(w)dw =

F (z1)− F (z0) concluding the proof.

Back to the proof of Liouville’s Theorem: We suppose that |F (z)| ≤M ∀z ∈ C.

(i) To prove that F is constant. we only need to show that F ′ = 0 in C which is indeed connected.
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(ii) Use Cauchy’s generalised integral theorem for a path γ : [0, 2π] → C, γ(t) := z0 + Reit with

R > 0 and z0 ∈ C:

F ′(z0) = 1
2πi

∫
γ

F (w)
(w − z0)2dw = 1

2πi

∫ 2π

0

F
(
z0 +Reit

)
(Reit)2 iReitdt = 1

2πR

∫ 2π

0
F
(
z0 +Reit

)
e−itdt

(iii) Use that F is bounded:

0 ≤
∣∣F ′(z0)

∣∣ ≤ 1
2πR

∫ 2π

0

∣∣∣F (z0 +Reit
)∣∣∣ dt ≤ M

R
R→∞−→ 0

Since z0 ∈ C is arbitrary, it follows F ′ = 0.

Hence, using the previous lemma, we are done.

Note. This is possibly the most striking difference between real and complex analysis, e.g. sinC : C→

C is unbounded!

Note. It implies that there is no (bi-)holomorphic function C→ B1(0), i.e. C ̸∼= B1(0).

Theorem 3 (Maximum Principle). Let U ⊆ C be a domain and F : U → C holomorphic and non-

constant. Then |f | has no local maximum in U .

In particular, if U is bounded and F can be extended to a continuous function FC : Ū → C, then |f |

takes its maxima on the boundary ∂U .

Theorem 4 (Identity Theorem). Let U ∈ C be a domain, f, g : U → C be holomorphic and let V ⊆ U

be an non-empty subset such that f(z) = g(z) on V . Then f = g in U .

Theorem 5 (Riemann Extension Theorem). Let F : Bε(z0) \ {z0} → C be a bounded holomorphic

function. Then F can be extended uniquely to a holomorphic function F̃ : Bε(z0)→ C.

Definition 3 (Bi-holomorphic Function). Let U, V ∈ C be open subsets and f : U → V holomorphic.

We call f bi-holomorphic if it is bijective such that f−1 is also holomorphic.

Theorem 6 (Little Riemann Mapping Theorem). Let U ⊊ C be a simply connected and open subset

in C. Then U is bi-holomorphic to the unit ball B1(0) ⊆ C.

Theorem 7 (Residue Theorem). Let F : Bε(z0)\{z0} → C be holomorphic with an isolated singularity

in z0. Then F has a Laurent Series Expansion at z0

F (z) =
∞∑

n=−∞
αn(z − z0)n with Resf (z0) = α−1 = 1

2πi

∮
|z−z0|=ε/2

F (z)dz (5)

and αn ∈ C ∀n ∈ Z.
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1.3 Several Complex Variables

We now consider the case with more than one complex variable.

Definition 4 (Holomorphic Function (n > 1)). Let U ⊆ Cn and let f : U → C such that f ∈ C∞.

Then f is holomorphic if the Cauchy-Riemann-Equations (c.f. 3) with f = u+ iv are satisfied for all

zj = xj + iyj , j = 1, . . . n.

Note. Once again, we can rewrite this in a more compact fashion:Ö∂xju = ∂yjv

∂yju = −∂xjv

è
⇔ ∂z̄jf = 0 (6)

with ∂z̄j = 1
2(∂xj + i∂yj ).

Note. When n > 1, we take polydisks as a basis for the topology:

Bε (w) = {z ∈ Cn : |zj − wj | < εi ∀i} (7)

Theorem n = 1 n > 1

Cauchy integral formula ✓ ✓

analytic = holomorphic ✓ ✓

Liouville’s Theorem ✓ ✓

Maximum Principle ✓ ✓

Identity Theorem ✓ ✓

Riemann Extension Theorem ✓ ✓

Riemann Mapping Theorem ✓ ✗

Table 1: Comparison between n = 1 and n > 1

Counterexample to the Riemann Mapping Theorem: C2 ⊃ B(1,1)(0) ⊊ D

Note. Viceversa, there are also theorems which hold true in several variables but not in one variable.

Theorem 8 (Hartog’s Extension Theorem). Let ε := (ε1, . . . , εn) and ε′ := (ε′
1, . . . , ε

′
n) with n > 1

such that ε′
i < εi for all i = 1, . . . , n. Then any holomorphic map f : Bε(0) \Bε′(0)→ C can uniquely

be extended to a holomorphic map f : Bε(0)→ C.

“Slogan”: A holomorphic function in Cn ⊃ U\{z0}, z0 ∈ Cn extends to a holomorphic function in all U .

Counterexample in d = 1: f(z) = 1
z is holomorphic on C \ {0}, but it cannot be extended to a

holomorphic function in C!
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2 Elements of Sheaf Theory

Local Properties of Holomorphic Functions: a holomorphic function F : U → C with a domain U ⊆ C

is determined completely by local information.

Remark. This is spelled out precisely in the Identity Theorem (Theorem 4) in complex analysis.

Theorem 9. Let U ∈ C be a domain and let F,G : U → C be holomorphic. If V ⊆ U is a non-empty

open subset and F
∣∣
V

= G
∣∣
V

, then F = G on U .

Locally, a holomorphic function is represented by its Taylor Series Expansion: we now want to

study holomorphic functions from this local point of view, i.e. we “forget” the domain of definition

of F , but only take into account its “local representations”. This leads to the notion of sheaves of

holomorphic functions.

Definition 5 (Presheaf). Let X be a topological space. We say that F is a presheaf (of abelian

groups) if

1) X ⊇ U 7→ F(U) ∈ Obj(Ab) (F(U) is an abelian group for all U ∈ X)

2) For all inclusions U ⊆ V , there is a homomorphism of abelian groups, namely the restriction

morphism:

Definition 6 (Restriction Morphism). This is a homomorphism of abelian groups,

(V ↪→ U) 7→
(
ρUV : F(U)→ F(V )

)
, such that

1) ρUU = idU

2) ρVW ◦ ρUV = ρUW for W ⊆ V ⊆ U

We introduce the following notation: ρUV (s) =: s
∣∣
V

.

Note. Usually, one defines F(∅) := 0 (the trivial abelian group), but this is not an axiom.

Note. Elements in F(U) are called sections (of F over U).

Definition 7 (Sheaf). A presheaf on X is called a sheaf (of abelian groups) if it satisfies the following

conditions (sometimes called sheaf axioms):

1) Local Identity: Let {Uj} be open sets in X and s, t ∈ F(U) with U = ⋃
j Uj . If s

∣∣
Uj

= t
∣∣
Uj

for all j, then s = t in U .

2) Gluing: Let {Uj} be open sets in X with U = ⋃
j Uj . Then for any collection of sections

sj ∈ F(Uj) with sj
∣∣
Ui∩Uj

= si
∣∣
Ui∩Uj

for all i, j, there always exists a global section S ∈ F(U)

such that s
∣∣
Uj

= sj for all j.
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Note. By condition 1), the global section in 2) is unique.

Example 2 (Sheaf of Holomorphic Functions). Consider X = Cn. Then

Cn ⊇ U 7−→ O(U) := {f : U → C | f is holomorphic} is the sheaf of holomorphic functions.

Remark. Although sheaves are defined on open sets, the underlying topological space X consists of

points. It is therefore reasonable to try to isolate the behaviour of a sheaf at a point a ∈ X.

Conceptually, we do this by looking at a small neighbourhood of the point. If we look at a sufficiently

small neighbourhood Ua of a, the behaviour of the sheaf will be the same as the behaviour of the sheaf

in a ∈ X.

Problem: No single neighbourhood will be ”small enough”, so we have to take a sort of ”limit” proce-

dure. This leads to the concept of the direct limit:

(i) Let F be a (pre)sheaf on X. For a ∈ X, we consider {Ua}, the set of all possible open neigh-

bourhoods and we consider the disjoint union ∐
Ua
F(Ua).

(ii) We introduce an equivalence relation on ∐
Ua
F(Ua): let s ∈ F(U1), t ∈ F(U2) with U1, U2 ∈

{Ua}: Then, define:

s ∼a t :⇐⇒ ∃V ∈ {Ua}, V ⊆ U1 ∩ U2 : s
∣∣
V

= t
∣∣
V

(8)

This means that we consider equivalent the sections that coincide locally.

Definition 8 (Stalk). The stalk of a presheaf F at a ∈ X is (the abelian group)

Fa := lim
→
F(U) :=

∐
Ua∋a

F(Ua)/ ∼a (9)

Definition 9 (Germ). Elements sa ∈ Fa are called germs of a section s ∈ F(Ua), a ∈ Ua. A germ

is represented by a pair: sa = (Ua, s). In particular, there is a map ρa : F(Ua) → Fa such that

s 7→ sa := ρa(s).

Question: For f ∈ O(U), holomorphic in U ∈ Cn, what is the relationship between OCn,a ∋ fa (stalk

of f in a ∈ U) and the (convergent) Taylor expansion of f at a ∈ U?

This leads to the following theorem:

Theorem 10. Let a ∈ U ⊆ Cn. Then the stalk OCn,a is isomorphic to the algebra of convergent

Taylor series at a ∈ U , C{z1 − a1, . . . zn − an}:

{f, g are holomorphic in Ua and give rise to the same germ fa = ga at a}

⇐⇒

{f, g have the same Taylor expansion at a}
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Remark. We could restrict to the case a ∈ U being the origin since translations τaf(z) := f(z − a)

induce an isomorphism of algebras OCn,a
∼= OCn,0.

Remark. OCn,0 and C{z1, . . . , zn} are C-algebras, i.e. they satisfy

sa · ta = (s · t)a, sa + ta = (s+ t)a, λsa = (λs)a. (10)

We will now focus on some properties of OCn,0 ∼= C{z1, . . . , zn}.

Theorem 11. The ring OCn,0 ∼= C{z1, . . . zn} is “very nice”. In particular:

1) OCn,0 is local (unique maximal ideal)

2) OCn,0 is OFD and Noethernian (follows from the Weierstrass Division Theorem)

Finally, we introduce the notion of meromorphic functions. We recall that in one variable, one has

the following definition:

Definition 10 (Meromorphic Function on U ⊆ C). Let U ⊆ C be open. A function f : U → C is

meromorphic if f : U \{p1, . . . , pk} → C is holomorphic and f has poles of finite order at every point

{p1, . . . , pk}.

One shows that locally f ∼ g
h with g

h holomorphic. This generalises to Cn:

Definition 11 (Meromorphic Function on U ⊆ Cn). Let U ⊆ Cn be open. We say f : U → C is

meromorphic if it is locally a quotient of holomorphic functions, i.e. f
locally∼ g

h with g, h : U → C

holomorphic.

This means that as a function f : U \S → C, there exists an open over ⋃
i Ui of U and holomorphic

functions fi, gi : Ui → C such that f
∣∣
Ui\S
· hi
∣∣
Ui\S

= gi
∣∣
Ui\S

.

Example 3 (Sheaf of Meromorphic Functions). U 7→ KCn(U) := {f : U → C | f meromorphic}

Consider the stalk of Kn
C at a point: As it can easily be imagined, the stalk at a point a ∈ Cn is such

that the following holds:

Theorem 12. Let a ∈ Cn. Then KCn,a
∼= CLaurent{x1 − a1, . . . , xn − an} (convergent Laurent Series

at a ∈ Cn).

Note. KCn,a is a field (no ideal except of itself and the trivial one) and indeed KCn,a is the field of

fractions of the integral domain OCn,a, that is:

KCn,a = Frac (OCn,a) ∼= CLaurent{x1 − a1, . . . , xn − an} (11)

This “justifies” that f = g
h locally.
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3 Complex Manifolds

3.1 Basic Defintions

We let X be a topological manifold (i.e. it has the Hausdorff property and it is locally homeomorphic

to an open set V ∈ Rn).

Definition 12 (Complex Chart). A local complex chart (U,φ) of X is an open set U ⊆ X with a

homeomorphism φ : U → φ(U) ⊆ Cn (where Cn ∼= R2n).

Compatibility: Let (Uα, φα) and (Uβ, φβ) be two complex charts. We say they are compatible if the

transition functions

φβα := φβ ◦ φ−1
α : φα

(
Uα ∩ Uβ︸ ︷︷ ︸

⊆Cn

)
→ φβ

(
Uα ∩ Uβ︸ ︷︷ ︸

⊆Cn

)
(12)

are holomorphic.

Note. Observe that φαβ = φα ◦ φ−1
β is holomorphic too.

Definition 13 (Holomorphic Atlas). A holomorphic atlas of a space X is a collection of local charts

A := {(Uα, φα)}α∈I such that X = ⋃
α Uα and all the transition functions φαβ are bi-holomorphic

for all α, β. In this way, each pair of charts is compatible.

Definition 14 (Holomorphic Structure). A holomorphic structure on X is a maximal holomorphic

atlas A = {(Uα, φα)}α∈I . Maximal means that if (U,φ) is a chart and compatible with (Uα, φα) for

all α ∈ I, then (U,φ) ∈ A.

Definition 15 (Complex Manifold). A complex manifold is a topological manifold together with a

holomorphic structure.

Note. A holomorphic atlas B = {(Uβ, φβ)}β∈J determines a unique maximal atlas A with B ⊆ A. As

such it determines the complex manifold.

The atlas is given by A = {(U,φ) : (U,φ) is compatible with (Uβ, φβ) ∀β ∈ J}.

Remark (Complex Manifolds and Real Manifolds). Given a complex manifold X, we can think about

it without its holomorphic structure:

If dimCX = n, then X defines a differentiable manifold Xo with dimRXo = 2n. A complex chart

(U,φ) gives rise to a real chart (U, φ̃) via

φ = (z1, . . . , zn)←→ φ̃ = (x1, . . . , xn, y1, . . . , yn) (13)

with zj = xj + iyj for all j = 1, . . . , n.
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Theorem 13 (Complex Manifolds and Orientability). Consider a complex manifold X as a real

manifold Xo. Then Xo is orientable.

Proof. Any transition function φβα = φβ ◦φ−1
α : Cn → Cn is holomorphic and so is its inverse. We have

that det (JRφβα) = |det (JCφβα)|2 > 0 (exercise!). Notice that it is non-zero as φβα has an inverse.

Now JRφβα is the jacobian of the transition functions φ̃βα on Xo. Then every transition function

has positive determinant: it follows that Xo is equipped with a positive atlas, hence it is (positively)

oriented.

Consequence: Not every (even dimensional) differentiable manifold X2n
o can be seen as the underlying

differentiable manifold of a complex manifold.

Definition 16 (Holomorphic Functions). Let U ⊆ X be an open set. Then f : U → C is holomorphic

if for charts (Uα, φα) ⊆ A with Uα ∩ U ̸= ∅

f ◦ φ−1
α : φα (Uα ∩ U)→ C (14)

is holomorphic.

Sheaf of Holomorphic Functions:

X ⊇ U 7−→ OX(U) := {f : U → C | f is holomorphic} (15)

Note. It follows from the definition that using a chart (U,φ) with φ(x̃) = 0 for x̃ ∈ U , then OX,x ∼=

OCn,0. Stalks coincide with those of Cn.

Remark. Let (U,φ = (z1, . . . , zn)) a complex chart with x ∈ U , φ(x) = 0 and let f : U → C be

holomorphic. Then we have

(
f ◦ φ−1) (w) =

∞∑
k1,...,kn=0

αk1,...,knw
k1
1 . . . wkn

n (16)

with x ∈ U and φ(x) = w. This means that f(x) =
(
f ◦ φ−1)

)
(φ(x)) = ∑∞

k αk1,...,kn(φ1(x)︸ ︷︷ ︸
z1(x)

)k1 . . . (φn(x)︸ ︷︷ ︸
zn(x)

)kn .

Hence: f = ∑∞
k αkz

k1
1 . . . zkn

n , the Taylor expansion at a point.

Definition 17 (Holomorphic Map X → Y ). A map f : X → Y between complex manifolds is

holomorphic if ψβ ◦ f ◦ ϕ−1
α : φα(Uα ∩ f−1(Vβ))→ φβ(Uβ) is holomorphic for all charts (Uα, φα) of X

and (Vβ, ψβ) of Y . It is sufficient to verify in one atlas of X and Y .

We say that the manifolds are isomorphic, X ∼= Y , if there exists a holomorphic homeomorphism

X → Y . Note that f−1 is holomorphic as well.

We now come to a crucial result:
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Theorem 14 (Global Sections of OX). Let X be a compact and connected complex manifold. Then

OX(X) ∼= C.

Proof. Let f : X → C be holomorphic. Then, f is continuous and so is |f |. It follows that |f |

has a maximum at some x ∈ X since X is compact. But, if (U,φ) is a chart with x ∈ U , then

f ◦ φ−1 : φ(U) → C is locally constant by the Maximum Principle (theorem 3). Finally, since X is

connected, the identity principle (theorem 4) implies that f has to be constant.

Comment: There are no non-constant holomorphic functions and as such there are no embeddings in

Cn. Usually, compactness makes life easier. Instead, it tells us here that we are allowed to deal with

holomorphic functions because they are all constant.

3.2 Examples

Complex Projective Space

As usual, we define the complex projective space

Pn (:= CPn) :=
(
Cn+1 \ {0}

)
/ ∼, (17)

where u ∼ v ⇔ u = tv for t ∈ C× and u, v ∈ Cn+1 \ {0}. Note that there is an action (proper and

free) of C× on Cn+1 \ {0}; the quotient by this action is Pn. In other words, we let

π : Cn+1 \ {0} −→ Pn

(x0, . . . , xn) 7−→ [x0 : x1 : · · · : xn]
(18)

This is the quotient map and [x0 : · · · : xn] are called homogeneous coordinates.

Topology: Pn has the quotient topology: U ⊆ Pn is open if π−1(U) ⊆ Cn+1 \ {0} is open.

The usual atlas APn = {(Uj , φj})j=0,...,n is given by

φj : Uj −→ Cn

[x0 : · · · : xn] 7−→
Å
x0
xj
, . . . ,

x̂j
xj
, . . . ,

xn
xj

ã (19)

with Uj = {[x0 : · · · : xn] : xj ̸= 0}. Notice that the inverse map is given by φ−1
j : (x1, . . . , xn) 7→ [x1 :

· · · : 1 : · · · : xn].

Compatibility: As an easier example, we verify the compatibility between (U0, φ0) and (U1, φ1). The

transition functions yield:

φ0 ◦ φ−1
1 : φ1 (U0 ∩ U1) −→ U0 ∩ U1 −→ φ0 (U0 ∩ U1)

(x0, x2, . . . , xn) 7−→ [x0 : 1 : · · · : xn] 7−→
Å 1
x0
,
x2
x0
, . . . ,

xn
x0

ã
Note that φ0 ◦ φ−1

1 =: φ01 : φ1(U0 ∩ U1)→ φ0(U0 ∩ U1) is indeed holomorphic.
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Lemma 2. Pn is compact for any n.

Proof. We let S2n+1 = {u ∈ Cn+1 : ∥u∥ =
√∑

i |uj |2 = 1}. We know that S2n+1 is compact and we

can observe that π
∣∣
S2n+1 : S2n+1 → Pn is surjective. Indeed, if p = π(u) ∈ Pn, there exists a t ∈ C×

such that ∥tu∥ = 1 which implies tU ∈ S2n+1 and π(tu) = π(u) = p. Now, the map π is continuous

and maps compact sets to compact sets.

Note. π : Cn+1 \ {0} → Pn is holomorphic, hence continuous. Indeed, let us check this using atlases

{(Cn+1 \ {0}, idCn+1\{0})} on Cn+1 \ {0} and the standard atlas {(Uj , φj)}j on Pn. We look at j = 0:

π ⇝ φ0 ◦ π ◦ idCn+1\{0}(z0, . . . , zn) = φ0 ([z0 : · · · : zn]) =
Å
z1
z0
, . . . ,

zn
z0

ã
The map is clearly holomorphic on π−1(U0) ⊆ Cn+1 \ {0}.

Remark (Sheaves on Pn). First, we define the sheaf of regular functions on Pn:

U 7−→ OPn(U) :=
{
f ∈ OCn+1\{0}

(
π−1(U)

)
: f(λx) = f(x) ∀x ∈ π−1(U), λ ∈ C×} (20)

Exercise: Let (x0, x1) ∈ Cn with x0 ̸= 0. Show: Then, F = x1
x0
∈ OP1(U0).

• Notice that f ∈ OCn+1\{0}(π−1(U)). The corresponding regular function F on U is well-defined

as F (π(x)) = f(x).

• Notice that OPn is a sheaf of rings.

The sheaves OPn(k): Let k ∈ Z and we define:

U 7−→ OPn(k)(U) :=
¶
G ∈ OCn+1\{0}

(
π−1(U)

)
: G(λx) = λkG(x) ∀x ∈ π−1(U), λ ∈ C×

©
(21)

This sheaf has the following properties:

• It is an abelian group with (G+H)(x) = G(x) +H(x).

• It is a OPn(U)-module with (fG)(x) = f(π(x))G(x) for f ∈ OPn(U).

• It is locally free (of rank 1), i.e. for all U ⊆ Uj one has an isomorphism

U 7−→

OPn(k)(U)
∼=−→ OPn(U)

G 7−→ x−k
j G

(22)

It follows from this that the product map OPn(k)⊗OPnOPn(l)
∼=−→ OPn(l+k) given by G⊗H 7−→

GH is an isomorphism.
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Complex Tori

Definition 18 (Lattice). Let Cn be seen as a R-vector space and consider 2n linearly independent

vectors {w1, . . . , w2n} over R, that is Cn = Rw1 ⊕ · · · ⊕ Rw2n. A lattice in Cn is defined as the subset

Λ :=
®
λ ∈ Cn : λ =

2n∑
i=1

kiwi, ki ∈ Z

´
(23)

Note. Λ ⊆ Cn is an additive subgroup of Cn and it is isomorphic to Z2n.

Definition 19 (Complex Torus). A complex torus is defined as the quotient Cn/Λ =: A(n)

Remark. As a group, we have Cn/Λ ∼= R2n/Z2n ∼= (R/Z)2n ∼= (S1)2n. This explains the name ”torus”.

Topology: It is worth observing that A(n) can also be seen as a quotient with an equivalence relation,

i.e. A(n) = Cn/ ∼, where z ∼ w ⇔ z − w ∈ Λ. It follows that A(n) is a topological space with the

quotient topology, moreover it is Hausdorff.

• π : Cn → Cn/Λ is open: Indeed, let V ⊆ Cn be open and consider π(V ). One has that π(V )

is open if π−1(π(V )) (the ”saturation” of V ) is open, but π−1(π(V )) = ⊔
λ∈Λ(V + λ) where the

right hand side is open because it is an infinite union of (translated) open sets in Cn.

• A(n) is compact: We have A(n) = π(Λ̂) with Λ̂ = {∑i tiwi, t ∈ [0, 1]}. But since ˆLambda is

compact and π is continuous, A(n) is compact. (Notice A(n) ∼= (S1)2n)

Charts and Atlas: For x ∈ A(n), let us consider some z ∈ Cn such that π(z) = x.

(i) Choose a neighbourhood V ⊆ Cn for z ∈ Cn such that πV := π
∣∣
V

∼=→ π(V ) is a bijection. Notice

that this is always possible, e.g. using V = {z + ∑2n
i=1 tiwi : |ti| < 1

2 ∀i = 1, . . . , 2n}

(ii) Then one has in particular that if z, z′ ∈ V , z ̸= z′ + Λ so that z ̸∼ z′ unless z = z′. This means

that πV V → π(V ) is injective.

(iii) Since πV is open and injective, it is a homoemorphism.

Thus, (π(V ), π−1
V ) is a complex chart for x ∈ A(n).

Compatibility: Let V,W ⊆ Cn, V ∩W ̸= ∅ and π(V ), π(W ) ⊆ A(n). Then, we have π−1
W ◦ (π−1

V )−1 :

π−1
V (π(V ) ∩ π(W )) → π−1

W (π(V ) ∩ π(W )). Consider a point z ∈ π−1
V (π(V ) ∪ π(W )) with z′ = π−1

W ◦

(π−1
V )−1(z) and apply πW : W

∼=−→ π(W ) to find πV (z) = πW (z′). This implies π(z) = π(z′), so there

exists a λ ∈ Λ with z′ = z + λ. Hence: π−1
W ◦ (π−1

V )−1(z) = z + λ.

Conclusion: Transition functions are translations by elements in Λ for any choice of V and W . In

particular, they are holomorphic and A(n) is a complex manifold.
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Note. π : Cn → A(n) is holomorphic. Indeed, restricting π to the sets V where it is a bijection yields

π−1
V ◦ πV ◦ idCn = idCn .

Remark (Sheaves on A(n)). The sheaf of regular functions on A(n) is given by

U 7−→ OA(n)(U) =
{
f ∈ OCn

(
π−1(U)

)
→ C : f(z + λ) = f(z) ∀z ∈ π−1(U), ∀λ ∈ Λ

}
(24)

The relation with F : U ⊆ A(n) → C is given by F (π(z)) = f(z). Sometimes, these functions are

called Λ-periodic functions.

3.3 Complex Submanifolds

Definition 20 (Complex Submanifold). A complex submanifold of a complex manifold X with

dimCX = n is a subset Y ⊆ X such that ∀a ∈ Y there exists a local complex chart (U,φ = (z1, . . . , zn))

of X, called the preferred chart, with φ(a) = 0 and

φ(U ∩ Y ) = {u ∈ φ(U) ⊆ Cn : uk+1 = · · · = un = 0} (25)

Alternatively, there exists a holomorphic atlas for X, A = {(Uα, φα)} such that φα
∣∣
Uα∩Y : Uα∩Y

∼=−→

φα(Uα) ∩ Ck where Ck ↪→ Cn, (z1, . . . , zk) 7→ (z1, . . . , zn, 0, . . . , 0).

Note that codimX Y. = dimX − dimY = n− k.

Note. A complex submanifold is itself a complex manifold of dimension k. If (U,φ) is a preferred

chart, one obtains a complex chart as above by using (U ∩ Y, φ|U∩Y ). Note that the compatibility of

these charts follows from those of X.

Note. We now want to provide methods to obtain complex submanifolds and we will see that, on a

very general ground, there are two such possibilities to do so:

1) The preimage of a point via a ”sufficiently regular” map is a submanifold.

2) Under strong conditions, the image φ(X) of a map φ : X → Y is an embedded submanifold of

Y . This means that φ(X) ⊆ Y in some ”non-singular” way.

Theorem 15 (Preimage Manifold). Let φ : X(n) → Y (m) be a holomorphic map between complex man-

ifolds with n > m and let b ∈ φ(Xn) ⊆ Y (m) be such that the rank of φ is maximal, i.e. rank(JCφ) = m

for all a ∈ φ−1(b). Then φ−1(b) is a complex submanifold of dimension n−m.

Theorem 16 (Embedded Manifold). Let φ : Y ↪→ X be an injective holomorphic map with m =

dimY, dimX = n and m ≤ n such that φ has maximal rank m on all Y . If Y is compact, then φ(Y )

is a submanifold of X and φ : Y → φ(Y ) ⊆ X is a holomorphic map. We say that φ(Y ) is isomorphic

to Y and φ is an embedding of complex manifolds.
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We will now look at some examples which are characterised by the fact that the submanifold is

embedded into some Pn:

Example 4 (Veronese Map). Consider

φd : Pn −→ Pm

[x0 : · · · : xm] 7−→ [xd0 : xd−1
0 x1 : · · · : xn]

(26)

with m :=
(n+d
n

)
− 1. It maps [x0 : · · · : xn] in all possible monomials in d variables of degree d. The

case n = 1 corresponding to φd(P1) is called rational normal curve.

Example: The twisted cubic curve:

φ3 : P1 −→ P3

[s, t] 7−→ [s3 : s2t : st2 : t3]
(27)

Example 5 (Segre Map). Consider

σn,m : Pn × Pm −→ P(n+1)(m+1)−1

([x0 : · · · : xn], [y0 : · · · : ym]) 7−→ [x0y0 : x0y1 : · · · : xiyj−1 : xiyj : · · · : xnym]
(28)

Example: The quadric (in P3):

σ1,1 : P1 × P1 −→ P3

([s, t], [u, v]) 7−→ [su : sv : tu : tv]
(29)

Example 6 (Complete Intersections). We let f be a homogeneous polynomial of degree d, i.e. f(tx) =

tdf(x) ∀t ∈ C. Then:

d

dt
f(tx) =

n∑
i=0

∂f

∂xi
(txi)xi = d · td−1f(x) t=1=⇒

n∑
i=0

xi
∂f

∂xi
(x) = d · f,

the Euler equation.

Theorem 17 (Complete Intersections). Let f1, . . . , fm ∈ C[x0, . . . , xn] be homogeneous polynomials

of degree dj, j = 1, . . . ,m for some m < n. We have the projective algebraic set

Y := {x ∈ Pn : f1(x) = · · · = fm(x) = 0} . (30)

Then, if rank(∂xk
fj) = m ∀x ∈ Y , ∀k = 0, . . . , n, ∀j = 1, . . . ,m, Y is a complex submanifold of Pn

which is compact of dimension n−m. We call Y a complete intersection.

Note. This realises complex (sub)manifolds as the zero locus of homogeneous polynomials in Pn.
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Example 7 (Conic in P2 as a Complete Intersection). Consider

Y :=
{

[x0 : x1 : x2] : P (x) = x0x2 − x2
1 = 0

}
(31)

with a homogeneous polynomial P of degree 2. We want to show that Y is a complex submanifold of

P2 of dimension 1 as a complete intersection of degree 2 in P2. This means that we need to show that

rank(∂xP ) = 1:

v =
Å
∂P

∂x0
,
∂P

∂x1
,
∂P

∂x2

ã
= (x2,−2x1, x0) != 0⇔ x0 = x1 = x2 = 0

As 0 /∈ P2, it follows that rank(∂xP ) = 1.

Complete Intersection and Veronese map φ2(P1): (degree 2 rational normal curve) Actually, the above

complete intersection is isomorphic to the Veronese variety

φ2 : P1 −→ P2

[s : t] 7−→ [s2 : st : t2]
(32)

• φ2(P2) ⊆ Y : Indeed, P (s2, st, t2) = s2t2 − s2 − t2 = 0.

• Y ⊆ φ2(P2): Consider [x0 : x1 : x2] ∈ Y . We suppose x0 ̸= 0 so that we assume [1 : x1 : x2]: we

have x2 = x2
1 so that x = [1 : x1 : x2

1], but [1 : x1 : x2
1] = φ2([1 : x1]). Now, suppose x0 = 0 which

implies x1 = 0 so that one has x = [0 : 0 : x2]. But then: [0 : 0 : x2] = [0 : 0 : 1] = φ2([0 : 1]).

Thus: Y ∼= P1.

Example 8 (Quadrics in P3 and Segre Map). Similarly as above, one can show that

σ1,1
(
P1 × P1) ∼=

x ∈ P3 : det

Ñ
x0 x1

x2 x3

é
= 0

 ∼= P1 × P1 ⊆ P3 (33)

N.B.: On the other hand, φ3(P1) (twisted cubic curve) is not a complete intersection!

Theorem 18. 1) Any (smooth) conic in P2 is isomorphic to P1.

2) Any (smooth) quadric in P3 is isomorphic to P1 × P1.

3.4 Submanifolds and Sheaves: Ideal Sheaves

Any sheaf F on Y
i
↪→ X can be considered as a sheaf on X: The push-forward or direct image sheaf :

i∗ : Sh(Y ) −→ Sh(X)

F 7−→ i∗F
(34)
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where we define X ⊇ U 7→ i∗F(U) := F(i−1(U)) (i−1(U) is open in Y ). If φ : F → G on Y , then

i∗(φ) : i∗F → i∗G is a sheaf morphism on X. This means that a OY -sheaf F can be looked at as a

OX -sheaf supported on Y .

Further, the restriction of holomorphic functions yields a natural surjection: i# : OX → iOY (this

is seen as a sheaf on X, it is simply denoted as OY ).

It follows that one has a short exact sequence of sheaves (on X), the structure sheaf sequence:

0 −→ IY −→ OX
i#−→ OY −→ 0 (35)

The sheaf IY is called ideal sheaf :

X ⊇ U 7−→ IY (U) := {f : U → C : f is holomorphic and vanishing on Y ⊆ X} (36)

This is the way one looks at submanifolds on a sheaf-theoretical ground.

4 Vector Bundles and Line Bundles

4.1 Bundles, Sections and Adjunction

Definition 21 (Holomorphic Vector Bundle). A holomorphic vector bundle of rank r on a complex

manifold X is a complex manifold E together with a surjective holomorphic map π : E → X such

that

1) Each fibre Ex := π−1(x) is a complex vector space of dimension n.

2) There exists an open covering X = ⋃
α∈I Uα and a family of bi-holomorphisms called local

trivialisations

ψα : π−1(Uα)
∼=−→ Uα × Cr (37)

such that they are linear isomorphisms on the fibers and the following diagram commutes:

π−1(Uα) Uα × Cr

Uα

ψα

π p1

Remark (Transition Functions). We can look at the transition functions between the local triviali-

sations:

ψα ◦ ψ−1
β : (Uα ∩ Uβ)× Cr −→ (Uα ∩ Uβ)× Cr

(x, v) 7−→ (x, gαβ(x)v)
(38)

Remark (Important!). The map x 7→ gαβ(x) is holomorphic and one has gαβ(x) ∈ GL(r,C), together

with
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1) gαα = idr

2) gαβ = g−1
βα

3) gαγ = gαβgβγ︸ ︷︷ ︸
cocycle conditions in Uα∩Uβ∩Uγ

(because gαβgβγgγα = idr).

Note. The data {Uα}α∈I , {gαβ}α,β∈I) determines the vector bundle ”uniquely”, E ←→ {Uα, gαβ}.

Proof of the remark 4.1. For all x ∈ Uα ∩ Uβ there exists a gαβ(x) ∈ GL(r,C) such that ψαβ(x, v) =

(x, gαβ(x)v) since ψαβ|π−1(x) is an isomorphism of vector spaces and fibre preserving. On Uα∩Uβ∩Uγ ,

we have: 
ψαβ ◦ ψβγ(x, v) = ψαβ (x, gβγ(x)v) = (x, gαβ(x) · gβγ(x)︸ ︷︷ ︸

matrix multiplication

v)

ψαγ(x, v) = (x, gαγ(x)v)

Since we have ψαβ ◦ ψβγ = ψα ◦ (ψ−1
β ◦ ψβ) ◦ ψ−1

γ = ψα ◦ ψ−1
γ ≡ ψαγ , this implies gαβ ◦ gβγ = gαγ . In

addition, we can conclude:

• α = β = γ: gαα ◦ gαα = gαα =⇒ gαα = id.

• α = γ: gαβ ◦ gβα = gαα =⇒ gαβ ◦ gβα = id.

Definition 22 (Holomorphic Section). A holomorphic section is a holomorphic map s : X → E such

that it preserves fibres of E (i.e. π ◦ s = idX). Usually, it is only defined locally: s : U → E.

Note (Zero Section). There is always at least one global section, the zero section: x 7→ 0 ∈ Ex ∀x ∈ X.

Note. For all open sets U ⊆ X the space Γ(U,E) := {s : U → E holomorphic} is naturally a complex

vector space.

Local Representation of Sections: Consider E ←→ (Uα, gαβ) and s ∈ Γ(U,E). Then

Uα ∩ U ∋ x
s7−→ s(x) ψα7−→ (x, sα(x)) ∈ (Uα ∩ U,Cr) , (39)

note that sα : Uα ∩ U → Cr is holomorphic! Under a change of trivialisation, one has:ψαβ (x, sβ(x)) = ψα ◦ ψ−1
β ◦ ψβ (s(x)) = ψα (s(x)) = (x, sα(x))

ψαβ (x, sβ(x)) = (x, gαβ(x)sβ(x))

Thus: sα(x) = gαβ(x)sβ(x).
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Remark. Conversely, going in the other direction, a collection of local sections sα : Uα → Cr deter-

mines uniquely a “global” section s : U → E. Indeed, s(x) = ψ−1
α (x, sα(x)) and this is independent of

the chart:

ψ−1
α (x, sα(x)) = ψ−1

α (x, gαβ(x)s(x)) = ψ−1
α ◦

Ä
ψα ◦ ψ−1

β (x, sβ(x)
ä

= ψ−1
β (x, sβ(x))

Local Description of S : U → E:

s←→ {Uα, sα : Uα −→ Cr, sα(x) = gαβ(x)sβ(x)} (40)

Now, we discuss some examples of holomorphic vector bundles:

Example 9 (Tangent Bundle). The tangent bundle is defined as

TX :=
∐
a∈X

TaX, va
π7−→ a (41)

and the transition functions are given by gαβ = (J−1(zα ◦z−1
β ))t, whereas the sections are vector fields:

X(a) = ∑
iX

i(a)∂xi

∣∣
a
∈ Γ(U, TX)

Example 10 (Cotangent Bundle). The cotangent bundle is defined as

Ω1
X := hom (TX,X × C) = T ∗X (42)

and is dual to the tangent bundle. Its transition functions are given by gαβ = J(zα ◦ z−1
β ) and the

sections are holomorphic 1-forms: ω(a) = ∑
i ωi(x)dxi

∣∣
a

Remark. We have

(E ←→ (Uα, gαβ))⇐⇒
Ä
E∗ ←→ (Uα, gtαβ

−1ä
. (43)

Also, we can take direct sums E⊕F , tensor products E⊗F , exterior products, etc. to construct new

vector bundles.

This leads to a last example:

Example 11 (Canonical Bundle). The canonical bundle is defined via the determinant:

KX := det
(
Ω1
X

)
=

dim(X)∧
Ω1
X (44)

It is a line bundle, that is a vector bundle of rank one.

Definition 23 (Morphism of Vector Bundles). For vector bundles πE : E → X of rank r and

πF : F → X of rank k, a map Φ : E → F is called a morphism of vector bundles if

1) it commutes with the projections: πF ◦ Φ = πE ,
E F

X

πE

Φ

πF
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2) it is linear on the fibers: ΦX : EX → FX is linear,

3) it has constant rank: rank ΦX does not depend on x ∈ X.

Local Representation of Morphisms: It follows that we have a map (x, v) 7→ (x,Φα(x)v) with Φα :

Uα → Mat(l × r,C), giving the local representation. We have
E
∣∣
Uα

F
∣∣
Uα

Uα × Cr Uα × Cl

ψα

Φ|Uα

ψα

Φα

,

where Φα acts as the identity on the first component and is linear on the second component.

Change of Trivialisation: Just like before, one hasΦ(x) = ψ−1
α (x,Φα(x)v)

φα (Φ(x)) = (x,Φα(x)v)

and

(x,Φα(x)v) = φα ◦ Φ ◦ ψ−1
α (x, v) = φα ◦

Ä
φ−1
β ◦ φβ

ä
◦ Φ ◦

Ä
ψ−1
β ◦ ψβ

ä
◦ ψ−1

α (x, v)

= φα ◦ φ−1
β ◦
Ä
φβ ◦ Φ ◦ ψ−1

β

ä
◦ ψβ ◦ ψ−1

α (x, v)

= φα ◦ φ−1
β ◦ (x,Φβ(x) ◦ gβα(x)v)

= (x, hαβ(x) ◦ Φβ(x) ◦ gβα(x)v) ,

so

Φ : E → F ←→
{

Φα : Uα → Mat(r × l,C) : Φα(x) = hαβ︸︷︷︸
F

(x)Φβ(x) gβα︸︷︷︸
E

(x)
}
.

Note that this is just the ”change of basis” of a matrix: Φ′ = hΦg−1

Remark (Injective Morphisms). The map Φ : E ↪→ F (with rankE = r ≤ l = rankF ) is injective if

it behaves like an inclusion, i.e. there exist trivialisations such that

φα ◦ Φ ◦ ψ−1
α : Uα × Cr −→ Uα × Cl(

x, (v1, . . . , vr)
)
7−→

(
x, (v1, . . . , vr, 0, . . . , 0︸ ︷︷ ︸

l−r

)
)
.

(45)

For Φ injective one can write ”nice” transition functions,Ñ
gαβ(x) ∗

∗ hαβ(x)

é
where gαβ is the transition function of E and kαβ is the transition function of F .

The above situation is represented by a short exact sequence

0 −→ E
i−−−−−→

injective
F

π−−−−−−→
surjective

F/E −→ 0 (46)

with Im(i) = ker(π).
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Definition 24 (Pull-back Bundle). Let f : Y → X be holomorphic and E ↔ (Uα, gαβ) be a vector

bundle on X. Then f induces a fiber bundle on Y by composition, given by f∗E ↔ (f−1(Uα), gαβ ◦f).

This is the pull-back bundle. Note that Ef(x) = f∗Ex.

Regarding submanifolds, for the inclusion i : Y ↪→ X, we write E
∣∣
Y

:= i∗E and note that E
∣∣
Y
↔

(Y ∩ Uα, gαβ
∣∣
Uα∩Uβ∩Y ).

Definition 25 (Normal Bundle). For an inclusion i : Y ↪→ X, consider TX
∣∣
Y

:= i∗TX. Then the

normal bundle is given by NY/X := TX
∣∣
Y
/TY . Alternatively, one can look at an short exact sequence:

0 −→ TY
di−→ TX

∣∣
Y
−→ TX

∣∣
Y

/
TY −→ 0 (47)

Theorem 19 (Adjunction Formula). Let Y ↪→ X be a complex submanifold. Then

KY
∼= KX

∣∣
Y
⊗OX

detNY/X . (48)

Proof. Just take the determinant of the normal bundle sequence:

0 −→ TY −→ TX
∣∣
Y
−→ NY/X −→ 0

=⇒ det
(
TX

∣∣
Y

) ∼= det(TY )⊗ det
(
NY/X

)
Note that det(TX

∣∣
Y

) = det(TX)
∣∣
Y

as det(gαβ
∣∣
Y

) = det(gαβ)
∣∣
Y

. Taking the dual yields KX

∣∣
Y
∼=

KY ⊗ det(NY/X)∗. It follows that KY
∼= KX

∣∣
Y
⊗ det(NY/X).

Analogously, consider the dual of the normal bundle exact sequence:

0 −→ N ∗
Y/X −→ T ∗X

∣∣
Y
−→ T ∗Y −→ 0

This is the canonical exact sequence.

Remark. Later, we will see a special case of this for codimension one hypersurfaces in Pn.

We will now see the relation between vector bundles and sheaves:

4.2 The Relation of Holomorphic Vector Bundles and (locally free) Sheaves

Definition 26 (Sheaf of Sections of ”E). Let π : E → X be a holomorphic vector bundle. We define

the sheaf of sections of E:

U 7−→ E(U) :=
{
s : U −→ π−1(E) : π ◦ s = id, s is holomorphic

}
(49)

It is a sheaf of OX -modules (here, OX is the sheaf of sections of the trivial bundle X × C).

Theorem 20. There exists a bijection between holomorphic vector bundles of rank r and locally free

sheaves of rank r.
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”Proof”. Remember that E is locally free of rank r if E
∣∣
U
∼= O⊕r

X

∣∣
U

. Clearly, E is locally free as E

is locally isomorphic to U × Cr. Also, by choosing the trivialisation ψi : E
∣∣
Ui

∼= O⊕r
Ui

, the transition

maps ψij := ψi ◦ψ−1
j : O⊕r

Ui∩Uj

∼=−→ O⊕r
Uj∩Ui

are given by a multiplication with a matrix of holomorphic

functions on Ui ∩ Uj . This constructs U ↔ (Ui, ψij).

5 Cohomology

Actually Čech cohomology.

5.1 Čech Cohomology

Definition 27 (p-th Cochain). Let X be a topological space with an open covering U = {Ui}i∈I such

that X = ⋃
i∈I Ui. For q = 0, 1, . . . and a sheaf F we define the q-th cochain group of F :

Cq (U,F) :=
∏

(i0,...,iq)∈Iq+1

(i1<···<iq)

F
(
Ui0 ∩ · · · ∩ Uiq

)
(50)

The elements of Cq(U,F) are called q-cochains: they are given by a family of section as follows:

(
fi0···q

)
i0,...,iq∈Iq+1 : fi0,...,iq ∈ F

(
Ui0 ∩ · · · ∩ Uiq

)
∀(i0, . . . , iq) ∈ Iq+1, i0 < · · · < iq (51)

Note. Cq is indeed a group with component-wise addition.

Definition 28 (q-Cohomology Operator). We define a cohomology operator on Cq(U,F):

δ : Cq (U,F) −→ Cq+1 (U,F)

(f)i0,...,iq 7−→ (δf)i0,..,iq+1 =
q+1∑
k=0

(−1)kfi0...îk···q+1

∣∣∣
Ui0 ∩···∩Uq+1

(52)

(Use the restriction morphism of F). Note that fi0...f̂k···q+1
∈ F(U

i0∩···∩‘Uik
∩···∩’Uq+1

), so we restrict to

the intersection Ui0 ∩ · · · ∩ Uiq+1 as to get an element in F(Ui0 ∩ · · · ∩ Uiq+1).

We have δ2 = δ ◦ δ = 0, δ is nilpotent!

Example 12. Consider C0(U,F), C1(U,F) and δ. Explicitly, one has

C0(U,F) = F(U0)×F(U1)× · · · =
∏
i∈I
F(Ui) ∋ (fi)i∈I

C1(U,F) = F (U0 ∩ U1)×F (U0 ∩ U2)× · · · =
∏
i,j∈I
F (Ui ∩ Uj) ∋ (fij)i,j∈I

δ0 : C0(U,F)→ C1(U,F) : (δf)ij = fj
∣∣
Ui∩Uj

− fi
∣∣
Ui∩Uj

≡ gij

δ1 : C1(U,F)→ C2(U,F) : (δf)ijk = fjk
∣∣
Ui∩Uj∩Uk

− fik
∣∣
Ui∩Uj∩Uk

+ fij
∣∣
Ui∩Uj∩Uk

≡ gijk
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Note that one can easily verify the nilpotency in this case

(fi) δ0
7−→ fj − fi

δ1
7−→ (fj − fi)− (fk − fi) + (fk − fj) = 0,

so indeed δ1 ◦ δ0 = 0.

Definition 29 (q-Cocycles/q-Coboundaries). Since δ is a group homomorphism, we define

• q-cocycles: Z1(U,F) := ker(δ : Cq → C⨿+∞)

• q-coboundaries: Bq(U,F) := Im(δ : Cq−1 → Cq)

Note that since δ2 = 0, we have α ∈ Bq =⇒ α ∈ Zq+1.

Example 13. Consider Z0(U,F) and Z1(U,F). By the very definition one has

(i) (fi) ∈ Z0 ⇔ (δf)ij = 0 ∀i, j ⇔ fj
∣∣
Ui∩Uj

= fi
∣∣
Ui∩Uj

, so there exists an f ∈ F(X), a global section

(compare with axiom 2) for sheaves).

(ii) (fij) ∈ Z1 ⇔ (δf)ijk = 0∀i, j, k ⇔ fik
∣∣
Ui∩Uj∩Uk

= fij
∣∣
Ui∩Uj∩Uk

+ fjk
∣∣
Ui∩Uj∩Uk︸ ︷︷ ︸

cocycle relations

It follows that fii = 0 (using i = j = k) and fij = −fji (using i = k).

Note that one can take the quotient as usual. This leads to:

Definition 30 (q-(Čech) cohomology group). The q-cohomology group of F with respect to the

covering U is given by

Hq(U,F) := Zq(U,F)
/
Bq(U,F). (53)

(Analogously Ȟq(U,F) := hq(C0(U,F)).

Remark (A little philosophy). This cohomology theory is very suitable for computations and it does

not require ”acyclic” sheaves to be defined. The problem is that it depends on the covering: like in

the definition of the stalk of a sheaf, one should take finer and finer coverings and pass to the limit

Ȟq(X,F) := lim→ Ȟq(U,F). This cohomology theory coincides with the ”true” sheaf cohomology if

X is a ”descent” topological space (e.g. it is paracompact). In this case Hq(X,F) ∼= Ȟq(X,F) =

lim→ Ȟq(U,F).

The Meaning of Cohomology: We now consider cohomology groups in some details:

1. H0(X,F) = Z0(X,F): global sections of F , i.e. H0(X,F) = F(X). Note that H0(X,OX) ∼= C

for X compact and connected. Also notice that it is independent of the covering.

2. H i>0(X,F): in order to see the meaning of the higher cohomology groups one should introduce

(short) exact sequences of sheaves! We first recall the following facts:
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Let φ : F → G be a morphism of sheaves. Then:

(i) ker(φ) := {U 7→ ker(φ)(U) := ker(φU : F(U)→ G(U))}, a sheaf!

(ii) Im(φ) := {U 7→ Im(φ)(U) := Im(φU : F(U)→ G(U))}, not a sheaf!

Im(φ) and coker(φ) are only presheaves in general: we consider their (sheafified) ”associated” sheaf.

5.2 Exact Sequences of Sheaves

Definition 31 (Exact sequence (of sheaves)). Let φ : F → G be a morphism of sheaves on X and let

φx : Fx → Gx be the induced morphism on the stalks. Then a sequence of sheaves

F α−→ G β−→ H (54)

is called exact if for each x ∈ X, the sequence Fx
αx−→ Gx

βx−→ Hx is exact, i.e. if Im(αx) = ker(βx).

In particular, we say that α : F → G is injective or a monomorphism if 0 −→ F α−→ G is exact

(ker(αx) = 0 ∀x ∈ X). We say that α : F → G is surjective or an epimorphism if F α−→ G −→ 0 is

exact (Im(αx) = Gx ∀x ∈ X).

An exact sequence of the form

0 −→ F −→ G −→ H −→ 0 (55)

is called a short exact sequence.

Lemma 3. Let α : F → G be injective. Then for every U ⊆ X αU : F(U) → G(U) is injective. In

particular, then α(X) : F(X) = H0(X,F)→ G(X) = H0(X,G) is injective, too.

Proof. We let f ∈ F(U) with αU (f) = 0. We want to show that f = 0. Since αx : Fx → Gx is injective

for all x ∈ X, every x ∈ U has a neighbourhood Vx ⊆ U s.t. f
∣∣
Vx

= 0, but then by (sheaf) axiom 1

(local identity) f = 0 in U . Hence, αU : F(U)→ G(U) is injective.

Warning: If α : F α−→ G is surjective, it is not necessarily true that αU : F(U) → G(U) is surjective

for all U ⊆ X!

Example 14. Consider X = C∗ with

exp : OX −→ O∗
X , f 7−→ exp(2πif). (56)

Let U1 = C∗ \ R− and U2 = C∗ \ R+ and prove that it is surjective. Then the positive axes can

be seen as two possible branch cuts in C∗ but these cannot be crossed locally in U1 and U2 (they

are simply connected), so the complex logarithm is a single valued well-defined function: We define

Uα ⊇ U1 7→ logU ∈ Hom (O∗
C∗(U),OC∗(U)) with f 7→ logU (f) ≡ 1

2πi logU (f). In particular, posing
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fi ≡ logUi
(gi) for gi ∈ O∗

C∗(U), we have expUi
(fi) = gi. Then exp is locally surjective, i.e. ∀U ⊆ X

and f ∈ O∗
C∗(U), there exists x ∈ U and Vx ⊆ U such that f |Vx admits a preimage with respect to

expVx
∈ Hom (O(Vx),O∗(Vx)) : this implies surjectivity at the level of the stalks, indeed if gx ∈ O∗

C∗,x

for some x ∈ Ui, then we represent gx by g ∈ O∗
C∗(Vx) with Vx ⊆ Ui but since expVx

is surjective then

there exists f ∈ OC∗(Vx) such that g = expVx
(f). It follows that gx =

(
expVx

(f)
)
x

= expx(fx) which

concludes the verification.

On the other hand consider the function z 7→ f(z) = z ∈ O∗
C∗(C∗): Then, there is no f ∈ OC∗(C∗)

such that z = expC∗(f) because logC∗(z) is not single valued!

Lemma 4. If 0→ F α→ G β→ H is exact, then 0→ F(U) αU→ G(U) βU→ H(U) is exact for all U ∈ X.

Proof. We have already proved that 0 → F(U) → G(U) is exact. We need to prove that Im(αU ) =

ker(βU ).

1. Im(αU ) ⊆ ker(βU ): Let f ∈ F(U) and let g = αU (f) ∈ Im(αU ). Since the sequence 0 →

Fx → Gx → Hx is exact for all x ∈ X, then each point x has a neighborhood Vx ⊆ U such

that βU (g)
∣∣
Vx

= 0 by exactness. Then, by sheaf axiom (I) one has that βU (g) = 0 and hence

g ∈ ker(βU ).

2. Im(αU ) ⊇ ker(βU ): Suppose g ∈ G(U) such that βU (g) = 0, i.e. g ∈ ker(βU ). Since for all x ∈ X

ker(βx) = Im(αx), then there is an open cover U = ⋃
l Vl and elements fl ∈ F(Vl) such that

αVl
(fl) = g

∣∣
Vl

. Then, in Vl ∩ Vj one has αVl∩Vj (fl − fj) = g
∣∣
Vl∩Vj

− g
∣∣
Vl∩Vj

= 0, hence since α

is injective fl = fj for all i, j on Vl ∩ Vj . Then it follows from sheaf axiom (II) that there exists

f ∈ F(U) with f
∣∣
Vi

= fi ∀i. Then, since αU (f)
∣∣
Vi

= αU (f |Vi) = g|Vi , sheaf axiom (I) implies

that α(f) = g.

Remark (Global Sections Functor). Given a (complex) manifold one can define a functor as follows:

(·)(X) : ShX −→ Ab,

F 7−→ F(X)
(57)

This functor is left exact/preserves injectivities but it is not right exact: it does not preserve surjec-

tivitites:

[0→ F → G → H → 0] 7−→ [0→ F(X)→ G(X)→ H(X)→?]

In general sheaf cohomology quantifies the failure for this functor to be exact: Čech cohomology is a

way to compute sheaf cohomology. The problems with surjectivity come from examples such as those

of exp : O → O∗.

We now study this in the framework of Čech cohomology.
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Remark (Induced Morphisms in Cohomology). Let us consider α : F → G. Then we have corre-

sponding morphisms in cohomology: αq : Hq(X,F)→ Hq(X,G).

q = 0: One simply has α0 : F(X) = H0(X,F)→ G(X) = H0(X,G).

q = 1: Let {Ui} = 0 be a covering ⋃
i Ui = X. We consider αU : C1(U,F)→ C1(U,G) such that (fij) 7→

αU (fij) :=
(
αUi∩Uj (fij)

)
ij
∈ C1(U,G). The map takes cocycles in cocycles and coboundaries in

coboundaries, hence it descends in cohomology: αU 7→ [αU ] : H1(U,F) → H1(U,G). As usual,

taking the limit over U one gets α1 : H1(X,F)→ H1(X,G).

q > 1: Exactly the same way!

Construction: “Connecting Homomorphism”: Suppose we have

0 −→ F α−→ G β−→ H −→ 0. (58)

Then we can construct a map δ0 : H0(X,H)→ H1(X,F) as follows:

1. h ∈ H0(X,H): Since βx : Gx → Hx is surjective there exists a covering U = {Ui} such that

X = ⋃
i Ui and (gi) ∈ C0(U,G) with β(gi) = h|Ui for all i.

2. Then β(gj − gi
∣∣
Ui∩Uj

) = h|Ui∩Uj − hUi∩Uj = 0 (so β(δg) = 0) which implies gj − gi
∣∣
Ui∩Uj

∈ kerβ.

3. By exactness kerU β = ImU α and the previous lemma one has that there exists fij ∈ F(Ui∩Uj)

such that αUi∩Uj (fij) = gj − gi|Ui∩Uj .

4. On Ui ∩ Uj ∩ Uk one has αUi∩Uj∩Uk
(fij − fik + fjk) = gj − gi − gk + gi + gk − gj = 0. Then, by

injectivity of α we have fij − fik + fjk|Ui∩Uj∩Uk
= 0 and hence (fij)i,j∈I ∈ Z1(U,F).

5. We can then define h 7→ δh ∈ H1(X,F) where δh is represented by (fij) constructed as above.

All higher δi>0 : H i(X,H)→ H i+1(X,F) can be constructed analogously!

C0(U,G) ∋ (gi) h ∈ H1(U,H)

H1(U,F) ∋ (fij) α(fij) ∈ C1(U,G)

δ

β

α

Figure 1: Summary of the maps defining h 7→ δ0h. Note that α is surjective and β is injective.

The connecting homomorphism enters in the following fundamental result:

Theorem 21 (Snake Lemma). A short exact sequence of sheaves

0 −→ F α−→ G β−→ H −→ 0 (59)

implies a long exact sequence in cohomology via the connecting homomorphism:
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0 H0(X,F) H0(X,G) H0(X,H)

H1(X,F) H1(X,G) H1(X,H)

H1(X,F) H1(X,G) H1(X,H) . . .

α0 β0

δ0

α1 β1

δ1

α2 β2

Proof. We only prove the exactness at H0(X,H):

• Im β0 ⊆ ker δ0: Suppose g ∈ H0(X,G) and h := β0(g). In the construction of δ0h we can use

gi = g|Ui . But then, since g is a global section, δ0g = 0 which implies α(fij) = δg = 0 by

construction. But since α is injective, we have fij = 0. It follows that δ0(β0(g)) = [fij ] = 0.

This is the picture:
g β(g)

0 δg

δ

α

• ker δ0 ⊆ Im β0: Suppose δ0. Then δ0[hi] = [fij] = 0 and therefore fij ∈ β1(U,F) and hence

fij = δ0fi = fj − fi. Let us consider β(gi) = h|Ui in the construction of δ0 with δ0gi = α(fij).

Then δ0(gi − α(fi)) = 0. Indeed:

δ(gi − α(fi)) = α(fij)− δ0α(fi) = α(fij)−
(
α(fj)− α(fi)

)
= α(fij)− α(fij) = 0

and thus giα(fi) ∈ Z0(U,G). Also: β(gi−α(fi)) = β(gi)−β(α(fi))) = β(gi) = h|Ui which finally

implies h ∈ Im(β0). Diagrammatically:
f1 g h

f δg

δ

β

δ

α

6 First Applications of Cohomology

In this section, we study some examples.

6.1 Exponential Exact Sequence

0 ZX OX O∗
X 1i exp

Let us consider the long exact cohomology sequence:

0 H0(X,Z) H0(X,OX) H0(X,O∗
X) H1(X,Z) H1(X,OX) . . .
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Note:

1. Ȟ i(X,ZX) ∼= H i
sing(X,Z). (This is true also more in general. . . ). This means that the part

“ZX” takes care about the topology of X!

2. If X is compact, then H1(Z)→ H1(OX) is injective, so that one has two exact sequences: First:

0→ H0(ZX)→ H0(OX)→ H0(O∗
X)→ 0

If X is also connected, then 0→ Z→ C→ C∗ ∼= C/Z→ 0. Second:

0→ H1(ZX)→ H1(OX)→ H1(O∗
X) ∼= Pic(X) δ→ H2(ZX)︸ ︷︷ ︸

interesting part

→ . . .

Definition 32 (First Chern Class). The first Chern class of a holomorphic line bundle L ∈ Pic(X)

is the image in H2(ZX) of L via the boundary map, i.e. C1(L) := δ1([gij ]) ⊆ H2(ZX) where [gij ] ∈

H1(OX) ∼= Pic(X).

This is the most important characteristic class of a holomorphic line bundle.

Example 15 (Pn and Exponential Exact Sequence). Remember that

H i(Pn,ZPn) ∼=

Z i = 2n

0 else

. Now

1. 0→ Z→ C→ C∗ → 0,

2. 0→ H1(Pn,Z) ∼= 0→ H1(Pn,OX) ∼= 0→ Pic(Pn) δ1
→ H2(Pn,Z) ∼= Z→ 0.

It follows that

deg : Pic(Pn)
∼=−→ Z

[OnP(k)] 7−→ k
(60)

Remark (Cohomology of OPn(k)). The previous result suggests that one can study the cohomology

of the line bundles OPn(k) for any n > 0, for all k ∈ Z. This is achieved by Čech cohomology

computations using the standard covering of Pn. Let us see a couple of examples over P1:

1. H0(P1,OP1(2)): Recall that U0 = {[x0 : x1] | X0 ̸= 0} and we set z := x1
x0

the corresponding

local coordinate on U0. A generic section of OP1(2)
∣∣
U0

will be of the form s0 = f(z) eU0 where

f : U0 → C is a holomorphic function and eU0 is a local basis of OP1(2). Similarly, a generic
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section of OP1(2)
∣∣
U1

will be s1 = g(w) eU1 (with w = 1
z ). In the intersection U0 ∩ U1 = {[x0 :

x1] | x0 ̸= 0 ̸= x1} one has eU1 = z2eU0 so that if si ≡ (s0, s1) is a 0-cochain C0({U0, U1},OP1(2))

0 != (δs)01 = s1 − s0

∣∣∣
U0∩U1

= g(w) eU1 − f(z) eU0 = g(w) eU1 − f
Å 1
w

ã
w2eU1

=
(

∞∑
l=0

glw
l −

∞∑
j=0

fjw
−j+2

)
eU1

=
(

(g0 − f2) + (g1 − f1)w + (g2 − f0)w2
)

+
∑
l>2

glw
l +

∑
j>2

fjw
−l

so every coefficient has to vanish separately:

s ∈ H0(P1,OP1(2)
)
⇐⇒ s =

(
a+ bz + cz2, c+ bw + aw2)

⇐⇒ s =
Ç
x2

0

Ç
a+ b

x1
x0

+ c

Å
x1
x0

ã2å
, x2

1

Ç
c+ b

x0
x1

+ a

Å
x0
x1

ã2åå
⇐⇒ s = ax2

0 + bx0x1 + cx2
1

In other words s ∈ H0(OP1(2)) is a homogeneous polynomial of degree 2 !

2. H1(P1,OP1(−2)): Left as an exercise. One should find

H1 (P1,OP1(−2)
)

=
≠ 1
x0x1

∑
C
.

In general, one can compute the dimensions of the cohomology groups for Pn:

h0 (Pn,OPn(k)) := dimH0 (Pn,OPn(k)) =
Ç
k + n

n

å
(61)

for k ≥ 0 and

hn (Pn,OPn)) := dimHn (Pn,OPn(k)) =
Ç
−k − 1
−k − n− 1

å
(62)

for k ≥ −n− 1.

6.2 Euler Exact Sequence

0 OPn OPn(+1)⊕n+1 TPn 0

Let us again consider the long exact cohomology sequence:

0 H0(OPn) ∼= C H0(OPn(+1))⊕n+1 ∼= (Cn+1)⊕n+1 H0(TPn) H1(OPn) ≡ 0

That means we have

0→ C→ C(n+1)2 → H0(TPn)→ 0 =⇒ H0(TPn) ∼= C(n+1)2−1
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Meaning: “Infinitesimal Automorphisms”: H0(TX) parameterises the infinitesimal automorphisms of

X, in particular in the case of Pn we have Aut(Pn) = PSL(n,C) so that H0(X,TPn) ∼= pgl(n,C)

(where pgl(n,C) is the Lie algebra.)

Going up in the long exact sequence we find H i>1(TPn) = 0. The remarkable case is given by H1.

Meaning: “infinitesimal Deformations:” H1(TX) parameterises the infinitesimal deformations of X. In

particular, in the case of Pn, we find no deformations. In this case we say that the complex manifold

is rigid.

Remark. One can understand the maps entering in the Euler exact sequence as follows:

1. OPn −→ OPn(+1)⊕n+1 with f 7−→ (x0f, x1f, . . . , xnf)

2. O⊕n+1
Pn (+1) −→ TPn with (s0, . . . , sn) 7−→∑n

k=0 sk∂xk

Exercise: Why is this exact?

6.3 Normal Exact Sequence and Adjunction

Recall the definitions of the pull-back bundle 24, the normal bundle 25 and the canonical bundle 11.

Definition 33 (First Chern Class of a Complex Manifold). Let X be a complex manifold. Then we

define the (first) Chern class of X to be C1(X) := C1(KX) where KX is the canonical bundle of X.

Also C1(∧n TX).

Also recall the adjunction formula 19.

Note. 1. We want to study this for dimension 1 hypersurfaces Y in X, this means dimY =

dimX − 1.

2. In particular, we want to study codimension 1 hypersurfaces in Pn, these hypersurfaces are called

divisors.

Fact: Hypersurfaces of codimension 1 are always given by the zero locus of a holomorphic global

section of some line bundle (“divisor-line bundle correspondence”).

We recall the following facts for codimension 1 hypersurfaces:

1. If dim Y = dimX − 1, then if a ∈ Y there exists (U, z = (z1, . . . , zn)) such that Y ∩ U = {x ∈

U | zn(x) = 0}.

2. A local equation for Y is a pair (U, f) with f : U → C holomorphic such that

• Y ∩ U = {x ∈ U | f(x) = 0},
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• if g ∈ O(U) and g(U ∩ Y ) = 0 =⇒ g = hf with h ∈ O∗
X(U).

Lemma 5. (U, zn) is a local equation for Y.

3. If (Uα, fα) and (Uβ, fβ) are two local equations for Y ↪→ X, then fα/fβ ∈ O∗(Uα ∩ Uβ). This

allows to introduce a line bundle: LY π→ X such that given an open covering {Uα}α∈I of X, one

has LY ↔ (Uα, fα/fβ).

Remark. LY does not depend on the choice of local equations for Y : indeed if one has L̃Y ↔

(Uα, hα/hβ) for local equations hα = 0, then Φα := hα/fα : Uα → C∗ (same class in H1(O∗))

and gαβ := fα/fβ = Φα(hα/hβ)Φ−1
β = Φαg̃αβΦ−1

β .

4.

Theorem 22. Let Y ↪→ X be a hypersurface and let LY as above. Then:

• There exists s ∈ H0(X,LY ) such that Y = {x ∈ X | s(x) = 0} (zero locus).

• There exists a covering {Uα} of X with s ↔ {sα : Uα → C} such that (Uα, sα) is a local

equation for Y .

• If L is a line bundle with s ∈ H0(X,L) which gives a family of local equations for Y , then

L ∼= LY .

Notation: LY ∼= OX(D) in the context of the divisors/line bundle correspondence.

Theorem 23. Let Y i
↪→ X and let LY as above. Then we have NY/X ∼= LY

∣∣
Y

.

Proof. We note that in this case NY/X is a line bundle since codim(Y ) = 1.

• From adjunction we have KY
∼= KX

∣∣
Y
⊗NY/X so that dualising det(TY ) ∼= det(TX

∣∣
Y

)⊗N ∗
Y/X

gives NY/X ∼= det(TX
∣∣
Y

)⊗ det(TX)∗.

• Let us now choose local charts (Uα, zα := zα,1, . . . , zα,n) such that (Uα, zα,n) is a local equation

for Y . It follows that an atlas for Y is given by AY = (Y ∩ Uα, zα,1, . . . , zα,n−1)α∈I .

• The fiber bundles that appear are given as follows:

TY ↔
ß
Uα ∩ Y, gαβ = ∂zα,k

∂zβ,l
, k, l = 1, . . . , n− 1

™
⇝ rank(TY ) = n− 1,

TX
∣∣
Y
↔
ß
Uα ∩ Y, Gαβ = ∂zα,k

∂zβ,l
, k, l = 1, . . . , n

™
⇝ rank

(
TY
∣∣
Y

)
= n,

LY ↔
ß
Uα, hαβ = ∂zα,n

∂zβ,n

™
⇝ rank(LY ) = 1.
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Let us compute the line k = n (last line) of Gαβ at a point y ∈ Y ∩ (Uα ∩ Uβ),

∂zα,n
∂zβ,l

(y) = ∂(hαβzbeta,u)
∂zβ,l

(y) =
Å
∂hαβ
∂zβ,l

ã
zβ,n(y)︸ ︷︷ ︸

=0

+hαβ(y)δnl = hαβ(y)δnl,

so

Gαβ =

Ñ
gαβ ∗

0 . . . 0 hαβ

é
with gαβ(x) ∈ GLn−1(C), hαβ(x) ∈ C∗. This is of the form Gαβ ↔ TX

∣∣
Y

. It follows that det(Gαβ
∣∣
Y

) =

det(gαβ) hαβ and hence det(TX
∣∣
Y

) ∼= det(TY ) ⊗ LY . In addition, from adjunction one sees that

det(TY )⊗NY/X ∼= det(TX
∣∣
Y

) and thus it follows that LY ∼= NY/X .

Now, consider the normal/canonical bundle sequence; We want to study it for Y (n−1) ↪→ Pn. In

view of the result above one has:

0 −→ TY −→ TX
∣∣
Y
−→ OX(D) −→ 0 ←→ 0 −→ OX(−D) −→ T ∗X

∣∣
Y
−→ T ∗Y −→ 0

Projective Hypersurfaces: We know that Y i
↪→ Pn is given by the zero locus of a global section of a

line bundle on Pn. We can thus observe the following:

1. Pic(Pn) ∼= Z with [OPn(k)] 7→ k ∈ Z,

2. H0(OPn(k)) ∼=

C[x0 . . . xn](k) if k ≥ 0

0 if k < 0,
where global sections are contained in the first case.

This is enough to identify LY for Y i
↪→ Pn with LY ∼= OPn(k) where k > 0. In other words, if

s ∈ H0(O(k)) for k > 0, then we have a hypersurface Y = {s = 0}.

Example 16. Consider Y := {[X : Y : Z] ∈ P2 | X2Y + Z3 = 0} and define F := X2Y + Z3 ∈

H0(OP2(3)). Notice this defines a g = 1 curve in P2, actually an elliptic curve/complex torus. This

follows from the genus-degree formula (see later) for Y d ⊆ Pn ⇝ H1(OY ) =
(d−1
n

)
.

1. global ÷ local: Let us dehomogenise the polynomial in Uz = {[X : Y : Z] ∈ P2 | Z ̸= 0} ∼= C2.

Considering fz(u, v) := F (XZ ,
Y
Z , 1) where u := X

Z , v := Y
Z in C2. Then we have fz(u, v) =

u2v + 1 ⊂ ϕz(Uz) ∼= C2. By the implicit function theorem f−1
z (0) is a complex manifold of

dimension 1 and (Uz, fz(u, v) = u2v + 1) is a local equation for Y .

2. local ÷ global: Changing coordinates via the trivialisations one has

ϕxz = ϕx ◦ ϕ−1
z

Ç
[X : Y : Z],

Å
X

Z

ã2 Y

Z
+ 1
å

= ϕx
(

[X : Y : Z : X2Y + Z3]︸ ︷︷ ︸
∈P3\{[0:0:0:1]}∼=P2

)
=
Ç

[X : Y : Z], Y
X

+
Å
Z

X

ã3å
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But then one sees that Y
X + ( ZX )3 = ( ZX )3[(XZ )2 Y

Z + 1] and hence fx = (gxz)fz, gxz = ( ZX )3 and

gxz = ( ZX )3 are the transition functions for OP2(3) which identify F as a global section in OP2(3).patch local (Uj , fj) ⇝ global F ∈ H0 (OPn(k))

restrict global F ∈ H0 (OPn(k)) ⇝ local (Uj , fj)

Given the discussion above we have immediately the following:

Corollary. If Y i
↪→ Pn is a hypersurface of codimension 1, then

NY/Pn
∼= OPn(d)

∣∣
Y

(63)

where d is the degree of the hypersurface Y ↪→ Y .

Proof. Simply LY ∼= OPn(d) and NY/X ∼= LY
∣∣
Y
∼= i ∗ OPn(d) ≡ OPn(d)

∣∣
Y

.

Corollary (Adjunction). The following holds true:

1. KPn(= ∧n T ∗
Pn) ∼= OPn(−n− 1).

2. For Y ↪→ Pn a hypersurface of codimension 1 and degree d, one has the adjunction formula:

KY
∼= OPn(d− n− 1)

∣∣
Y
. (64)

Proof. Starting with the first statement, just take det from 0 → T ∗
Pn → O⊕n+1

Pn (−1) → OPn → 0:

det(O⊕n+1
Pn (−1)) ∼= det(T ∗

Pn)⊗OPn det(OPn) ∼= det(T ∗
Pn). Since det(OPn) ∼= OPn and F ⊗OPn OPn ∼= F

for all sheaves F of OPn-modules. Also det(O⊕n+1
Pn (−1)) ∼= OPn(−n − 1). It follows that KPn ∼=

det(T ∗
Pn) ∼= OPn(−n− 1).

For the second statement, from the general adjunction formula one has KY
∼= KX

∣∣
Y
⊗ NY/X . For

X = Pn and Y
i
↪→ Pn of dimension n− 1, one has KX

∼= OPn(−n− 1) and LY ∼= OPn(d)
∣∣
Y

for d the

degree of Y . Hence KY
∼= OPn(−n− 1)

∣∣⊗OPn(d)
∣∣
Y
∼= OPn(d− n− 1)

∣∣
Y

.

Example 17 (Quintic in P4). Consider

Y3 :=
®

[X] ∈ P4
∣∣∣∣ 4∑
i=1

X5
i + c

4∏
i=0

Xi = 0, c ∈ C

´
. (65)

Then KY3
∼= OP4(5−4−1)

∣∣
Y3

= OP4(0)
∣∣
Y3
≡ OY3 . This means Y3 is a Calabi-Yau 3-fold! Superstrings

in D = 10 compactify on Y3: R10 ∼= R4 × Y3 where there is the effective theory and N = 1 SUSY on

R4 and Y3 is compact.
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6.4 Ideal Sheaf Sequence and Degree-Genus-Formula

To any complex submanifold Y
i
↪→ X is attached a short exact sequence:

0 jY OX i∗OY 0i∗

This is the ideal sheaf sequence. Note that this is a sequence of sheaves on X. Indeed, U ⊇ X 7−→

i∗OY (U) = OY (i−1(U)). Also, notice the following:

1. X ⊇ U 7−→ jY (U) := {f : U → C | f holomorphic, f(U ∩ Y ) = 0}, so f is in OX(U) and

vanishing along Y ↪→ X. This is a sheaf of ideals inside OX .

2. i∗OY := OX/jX , alternatively jX := ker(i∗ : OX → i∗OY ).

Codimension 1 hypersurface in Pn: In this case one has Y ↪→ Pn:

0 jY OPn OY 0·F

where ·F is the multiplication by the defining equation of Y = {F = 0} (F is a homogeneous

polynomial). Important: In this case one has jY ∼= OPn(−d) where d is the degree of F .

Degree-Genus-Formula: One can find a relation between the degree of F and the genus g of the

associated plane curve C ↪→ Pr2.

Definition 34 (Genus of X). We define the (arithmetic) genus of a complex projective manifold of

dimension n as

g := (−1)n
(
χ(OX)− 1

)
= (−1)n

Ç
n∑
l=0

(−1)l dimH l(X,OX)− 1
å
. (66)

Remark. If C is of dimension 1 and projective:

g = −
(

dimH0(C,OC)− dimH1(C,OX)− 1
)

= dimH1(OX) (67)

Setting: C i
↪→ P2 defined by F = 0 with F ∈ H0(P2,O(d)):

0 OP2(−d) OP2 i∗OC 0

Then this induces a long exact sequence in cohomology:

1. 0 −→ H0(O(−d))︸ ︷︷ ︸
∼=0

−→ H0(OP2)︸ ︷︷ ︸
∼=C

i−→ H0(i∗OC) ∼= H0(OC)︸ ︷︷ ︸
∼=C

−→ H1(O(−d))︸ ︷︷ ︸
∼=0

−→ . . .

This says that we have 0 −→ C
∼=−→ C −→ 0.

2. 0 −→ H1(OP2)︸ ︷︷ ︸
∼=0

−→ H1(OC) −→ H2(OP2(−d)) −→ H2(OP2)︸ ︷︷ ︸
∼=0

−→ . . .

This says that we have H1(OC ∼= H2(OP2(−d)). We conclude that h1(OC) = h2(OP2(−d)) =( d−1
d−2−1

)
=
( d−1

(d−1)−2
)

=
(d−1

2
)

and hence g
(
C ↪→ P2) =

(d−1
2
)

= 1
2(d− 1)(d− 2).
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Example 18. Consider the following three examples:

1. C1 := {F = X2
0 +X1X2 = 0} ⊆ P2 has g(C1) = 0 which implies C1 ∼= P1.

2. C2 := {F = X3
0 +X3

1 +X3
2 = 0} ⊆ P2 has g(C2) = 1 and hence C2 ∼= E, a torus!

3. C3 := {F = X4
0 +X4

1 = 0} ⊆ P2 has g(C3) = 3.

Question: Where are genus 2 curves?

Hyperelliptic Curves: Consider y2 = p(x) where P (x) ∈ C[x], deg(P ) = 2g+ 1 + ε with ε ∈ {0, 1} and

distinct roots. This means y2 = ∏2g+1+ε
i (x− ri) where the ri are the roots, i.e. P (ri) = 0.

1. Note that y2 = P (x) is an affine plane curve in C2, (x, y) ∈ C2, we call it X.

2. U = {(x, y) ∈ X with x ̸= 0} is an open set for X ⊆ C2.

3. Let Q(z) = z2g+2P (1
z ): This is a polynomial in z with distinct roots (since P has distinct roots).

4. w2 = Q(z) is an affine plane curve in C2, we call it Y .

5. V = {(z, w) ∈ Y with z ̸= 0} is an open set for Y in C2.

C2 ⊇ X ≡ {y2 − P (x) = 0} {w2 −Q(z) = 0} ≡ Y ⊆ C2

U ⊇ X glue
↭ V ⊆ Y

with gluing via

φ : U −→ V

(x, y) 7−→ (z, w) =
Å1
x
,
y

xg+1

ã
.

6. The surface X ∐
Y/φ̃ obtained via this gluing is a compact Riemann surface of genus g and is

called hyperelliptic.

Genus 2: It turns out that all g = 2 compact Riemann surfaces are hyperelliptic, e.g. y2 = x(x −

1)(x− 2)(x− 3) ⊆ C2 and gluing. These particular curves exist at every genus g and they can be seen

geometrically as given by a ramified double covering π : C 2:1−→ P1. The ramification points occur at

the roots of P (x). If P (x) is of odd degree, it is also ramified at p = {∞}.

6.5 Relations in Cohomology: Serre Duality

Serre duality is one of the most fundamental relations between cohomology groups of a certain sheaf

and its dual: this relation is mediated by the canonical sheaf Ωn
X ≡ KX . This is one of the many

reasons why the canonical sheaf is so important!
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The duality states

H i(X,F) ∼= Hn−1(X,F∗ ⊗KX)∗. (68)

Here n = dimCX and F∗ = homOX
(F ,OX) is the dual of F . Note that F = OX on a curve:

H1(OX) ∼= H0(X,Ω1
X)∗ which gives the genus.

Remark. One has to look at this as a “perfect paring”:

H i(X,F)×Hn−i(X,F∗ ⊗KX) non-deg−→ C

Let us compare this to Poincaré duality: For a compact smooth manifold M it states

H i
dR(M)×Hn−i

dR (M) n.d.−→ R

(ω, η) 7−→
∫
M
ω ∧ η,

(69)

so H i
dR(M) ∼= Hn−i

dR (M)∗. Note that dimV = dimV ∗ for any vector space.

7 Compact Riemann Surfaces

Compact Riemann Surfaces are compact complex manifolds of dimension 1, hence locally they are

described by a single coordinate function z : U → C for U ⊆ C. Their geometry is very special (and

beautiful).

Remark. Obviously, closed strings are modelled by compact Riemann surfaces.

7.1 Setting the Stage

Topology: The topology of compact Riemann surfaces is very easy and fully characterised by a single

invariant, the genus g.

Note that H i(C,Z) ∼=

Z i = 0, 2

Z2g i = 1
.

Figure 2: Examples for compact Riemann surfaces for g = 0 (left) and g = 1 (right)

This also gives a very important information:

C1 : H1(C,O∗
C) δ−→ H2(C,Z) ∼= Z

[L] 7−→ C1
(
[L]
)

= n
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Line bundles are classified by C1 which is a discrete number. In this context, this map is called the

degree of the line bundle:

deg(L) := C1(L) ∈ Z (70)

Example 19. deg(OP1(k)) = k ∈ Z.

Remark (Numerical Criterion). One can establish some results regarding the relation between the

cohomology and the degree of a line bundle:

deg(L) < 0 =⇒ H0(C,L)

Intuitively, deg(L) = (#zeros)− (#poles) of a section!

Theorem 24 (Riemann-Roch). Let C be a compact Riemann surface and let L be a line bundle on

it. Then

h0(C,L)− h1(C,L) = 1− g + deg
(
L
)

(71)

where hi = dimH i.

Note. The theorem establishes a relation between the cohomology groups of a line bundle on a

compact Riemann surface. It is one of the most useful results in complex algebraic geometry!

Corollary. Let KC = T ∗
C , the canonical bundle on C (i.e. the bundle of holomorphic 1-forms). Then

one has that

deg
(
KC
)

= 2g − 2. (72)

Proof. Recall that g = h1(OC) = h0(KC) by Serre duality. Then h0(KC)︸ ︷︷ ︸
g

−h1(KC) = 1− g + deg(KC).

Using Serre duality, h1(KC) = h0(TC ⊗KC), but TC ⊗KC = TC ⊗ TC∗ ∼= OC . It follows that h0(KC)−

h0(OC) = g − 1 and hence deg(KC) = 2g − 2.

Remark (Dimension of the Moduli SpaceMg). For a complex manifold X we have seen that H0(TX)

is related to the automorphisms, that is those maps that preserve a certain (complex) structure.

H1(TX) can be interpreted as a sort of “defect”: It tells how much a certain complex structure can

change (without changing the topology!). More precisely, H1(TX) gives a very rough representation

of the moduli space of complex structures on X, namely H1(TX) ∼= T[X]M. Nonetheless this is enough

to compute the dimension!

Dimension of M≥2 We use Riemann-Roch to compute h1(TC):

1. Serre duality: h1(TC) = h0(K⊗
C )⇝ holomorphic quadratic differentials.

2. Riemann-Roch: h0(K⊗2
C )− h1(K⊗2

C ) = 2(2g − 2)− g + 1 = 3g − 3.
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3. h1(K⊗
C ) = h0(T⊗

C ⊗KC) = h0(TC) but deg(TC) = −deg(KC) = 2−2g and if g ≥ 2, then 2−2g < 0

which implies h0(TC) = h1(K⊗2
C ) = 0

It follows that h1(TC) = 3g − 3 if g ≥ 2. Some examples:

Consider the Riemann sphere (g = 0). Here h1(TP1) = h1(OP1(+2)) = 0, no moduli! (The moduli

space is a “point” plus isomorphisms.)

Next, consider tori/elliptic curves (g = 1). Here h1(TE) = h1(OE) S.D.= h0(OE) = 1.

To conclude:

dimCMg =


0, g = 0,

1, g = 1,

3g − 3, g ≥ 2

Definition 35 (Hodge Numbers). Let X be a compact complex manifold. Then we call hp,q(X) :=

dimHq(X,Ωp
X) the Hodge numbers of X.

Remark. The numbers hp,q(X) can be arranged into a “diamond”-shaped figure, the Hodge diamond.

For example, consider dimCX = 2:

h2,2

h2,1 h1,2

h3,0 h1,1 h0,2

h1,0 h0,1

h0,0

Figure 3: Hodge diamond for dimCX = 2.

Note. Not all the hp,q are independent! They are related by symmetries:

1. Hodge symmetry: hp,q(X) = hq.p(X).

2. Serre duality: hp,q(X) = hn−p,n−q(X). Indeed, Hq(Ωp
X) ∼= Hn−q(Ωn

X ⊗
∧p TX) ∼= Hn−q(Ωn−p

X )

by using the pairing.

Hodge diamond and topology: Let us now look at the Hodge diamond of a compact Riemann surface

of genus g:
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h1,1 = h1(Ω1
C) = 1

h1,0 = h0(Ω1
C) = g h0,1 = h1(OC) = g

h0,0 = h0(OC) = 1

One can observe that the sum of the Hodge numbers on the rows give the Betti numbers b(C) of C,

indeed:

bi(C) = dim
(
H i

dR(C)⊗ C
)

= dim
(
H i(C,Z)⊗ C

)
=

1, i = 0, 2

2g, i = 1
=

∑
p+q=i

hp,q(C)

In fact, this is a very general and important result:

Theorem 25 (Hodge Theorem). Let X be a compact connected (Kähler) manifold. Then

H i(X,C) ∼=
⊕
p+q=i

Hq
(
X,Ωp

X

)
(73)

where H i(X,C) = H i
dR(X)⊗ C is the de Rham-cohomology valued in C.

7.2 Moduli Space of Genus 1 Compact Riemann Surfaces

We say that (w1, w2) such that Λ = spanZ(w1, w2) for linearly independent w1, w2 ∈ C over R deter-

mines the complex structure of E = C/Λ. Recall that Λ ≡ Λ(w1, w2) := {nw1 +mw2 | n,m ∈ Z}.

Question: When do pairs (w1, w2) and (w̃1, w̃2) determine the same complex structure?

Remark. Without loss of generality we can assume Im(w2
w1

) > 0 and Im( w̃2
w̃1

) > 0.

Lemma 6. We have the following equivalence:

Λ(w1, w2) = Λ(w̃1, w̃2)⇐⇒ ∃A ∈ PSL(2,Z) := SL(2,Z)/{±1} :

Ñ
w̃1

w̃2

é
= A

Ñ
w1

w2

é
Proof. Let us prove the two implications separately:

“⇐= ”: Suppose w̃ = Aw for A ∈ PSL(2,Z). Then w̃ ∈ Λ(w) and hence it follows that Λ(w̃) ⊆ Λ(w).

Conversely, suppose w = A−1w̃, hence Λ(w) ⊆ Λ(w̃). It follows that Λ(w̃) = Λ(w).

“ =⇒ ”: Let Λ(w) = Λ(w̃). This means that w̃ ∈ Λ(w) and w ∈ Λ(w̃). Therefore w̃ = Aw and w = Ãw̃.

Hence on has

w = Ãw̃ = ÃAw =⇒ ÃA = 12 =⇒

Ñ
ã b̃

c̃ d̃

éÑ
a b

c d

é
=

Ñ
1 0

0 1

é
.
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Then, from det(ÃA) = det(Ã) det(A) = 1 one has (ãd̃− c̃b̃)(ad−bc) = 1. Since a, b, c, d ∈ Z, this

is only possible if ad− bc = ±1. Now consider the following: w̃2 = cw1 + dw2, w̃1 = aw1 + bw2.

Then, defining τ := w2
w1

= x+ iy with x, y ∈ R, we calculate:

w̃2
w̃1

= cw1 + dw2
aw1 + bw2

=
dw2
w1

+ c

bw2
w1

+ a
= dτ + c

bτ + a
= (dτ + c)(bτ̄ + a)

|bτ + a|2

= 1
|bτ + a|2

[(
d(x+ iy) + c

)(
b(x− iy) + a

)]
= 1
|bτ + a|2

(
bdx2 + daxcbx+ ca+ bdy2 + i(ad− bc)y

)
Now using that 0 < Im(τ) = y, we have

0 < Im
Å
w̃2
w̃1

ã
= ad− bc
|bτ + a|2

Im
( w2
w1︸︷︷︸
>0

)

which implies ad− bc = 1 and hence A ∈ SL(2,Z). Finally, notice that A and −A maps to the

same lattice Λ̃ and thus one has to identify them. This leads to PSL(2,Z).

Theorem 26. E = C/Λ(w) has the same complex structure as Ẽ if and only if there exists A ∈

PSL(2,Z) and λ ∈ C× such that w̃ = λAw.

Proof. Again, we prove the implications separately:

“ =⇒ ”: Assume E ∼= Ẽ. This means that there exists a biholomorphic map C/Λ(w) φ→ C/Λ(w̃) that can

be lifted to the universal covering of E and Ẽ. Namely:

C C

C/Λ(w) C/Λ(w̃)

π

h

π̂

φ

One can choose 0 ∈ C and define h : C→ C such that π̂ ◦ h(0) = φ ◦ π(0). Now, this holds true

locally around the origin and it gives a biholomorphic map Up=0
h0→ Ũp=0 for neighbourhoods

U, Ũ ⊆ C of the origin. By analytic continuation h0 ⇝ h : C → C biholomorphic such that

π ◦ h = φ ◦ π everywhere in C.

On the other hand h ∈ Aut(C) are well-known: They are of the form h : C → C, z 7→ az + b

with a ∈ C×, b ∈ C. This means that

w1
h7−→ az + b

π̂
7−→ aw1 + b+ Λ2 and w2

π7−→ w1 + Λ1 = Λ1
φ7−→ b+ Λ2

and since one has π̂h = φπ it follows that aw1 ∈ Λ2.
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Remark: Note that in general φ(z + Λ1) = h(z) + Λ2 from the theory of universal coverings.

But then, since dz = λi ∈ H0(C/Λi,Ω1
C/Λi

), one has that φ∗λ2 = aλ1 by changing basis. Hence

φ∗λ2 = adz. On the other hand φ∗λ20dh = ∂zhdz if h is biholomorphic. Then one gets a

differential equation ∂zh = a, so
∫ z

0 ∂whdw =
∫ z

0 adw and we obtain h(z) = az+ b for b ∈ C such

that h(0) = b. Note that h(0) = b ∈ C is just an overall translation. One might require h(0) = 0,

i.e. 0 is mapped to 0.

Clearly, the same is true for going from w̃ to w via h: one finds that ãw̃ ∈ Λ1. It follows that if

E ∼= Ẽ, then w̃ = aAw with a ∈ C× and A ∈ PSL(2,Z).

“⇐= ”: We already showed that w and Aw define the same lattice up to translations. This is just a

change of basis in the lattice. To account for the translation we consider h(z) = z+ b. Similarly

also w and aw define the same lattice. this amounts to consider h(z) = az + b.

Remark (Long Story Short). A ∈ PSL(2,Z) is a change of basis of the lattice: As it is natural it

does not change the complex structure. On the other hand one can directly observe that one has the

isomorphisms

E1 ∋ [z] = z +
Å
n · 1 +m

w2
w1

ã
φ←→

1:1
w1z +

(
nw1 +mw2

)
= φ

(
[z]
)
.

Hence it is enough to consider lattices generated by the following pair: Λ = spanZ(1, τ) where τ = w2
w1

and Im(τ) > 0. Important: This allows to restrict to consider the Poincaré Half-Plane:

H := {τ ∈ C | Im(τ) > 0} (74)

where τ is the modulus.

Idea of Moduli Space: Take a suitable quotient of H so that each complex structure induced by a

lattice is contained only once:

Mg=1 ∼= H/PSL(2,Z)

with PSL(2,Z) the modular group. First of all, notice that if

Ñ
a b

c d

éÑ
w2

w1

é
=

Ñ
aw2 + bw1

cw2 + dw1

é
,

then

τ = w2
w1
7−→ aw2 + bw1

cw2 + dw1
= 1τ + b

cτ + d

which is a fractional linear transformation since ad− bc = 1.

Definition 36 (Fundamental Domain). It is z1 ∼ z2 in H if there exists g ∈ PSL(2,Z) such that

z2 = gz1 (i.e. z2 is in the orbit). A fundamental domain for PSL(2,Z) is an open set D ⊆ H which
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does not contain any points of distinct equivalent points and such that D (point set closure) contains

at least one point from each equivalence class.

It follows from this that the orbit of D covers H.

Remark. Finding Mg=1 is “the same” as finding D for PSL(2,Z) in H.

Lemma 7. Let z ∈ H be arbitrary but fixed. Then, there is only a finite number of (c, d) ∈ Z2 such

that |cz + d| ≤ 1.

Proof. Let (c, d) be such that |cz+d| ≤ 1. Then, posing z = x+ iy we have |cz+d|2 = (cd+ d)2︸ ︷︷ ︸
≥0

+c2y2

and thus c2y2 ≤ (cx + d)2 + c2y2 ≤ 1. Since z ∈ H with y > 0 it follows that |c| ≤ 1
y . Now, since

c ∈ Z there is only a finite number of points with this property. Then, let ĉ be one of such values, i.e.

|ĉ| ≤ 1
y . Regarding d, it is easy to see that (ĉx+ d)2 + ĉ2y2 ≤ 1 is only satisfied for a finite number of

values of d ∈ Z.

Lemma 8. Let z ∈ H be arbitrary but fixed and let PSL(2,Z) act on z. Then there exists only a

finite number of points g · z ∈ H such that for any g ∈ PSL(2,Z) we have Im(g · z) > Im(z).

Proof. For any g ∈ PSL(2,Z) and z ∈ H one has

g · z = az + b

cz + d
= az + b

cz + d

cz̄ + d

cz̄ + d
= Re(g · z) + i

ad− bc
|cz + d|2

Im(z)

and since ad − bc = 1 it follows that Im(g · z) = Im(z)
|cz+d|2 . Finally, lemma 7 tells that there is only a

finite number of pairs (c, d) such that |cz + d| ≤ 1.

Remark. The previous lemma 8 suggests that among the elements of an equivalence class g · z one

can choose an element of maximal height, i.e. a representative such that |cz+d| ≥ 1 for all (c, d) ∈ Z2:

[g · z] ∼ ẑ ≡ ĝ · z for some ẑ ∈ PSL(2,Z) : |cẑ + d| ≥ 1 ∀(c, d) ∈ Z2 (75)

Remark. Also notice g : z 7−→ g · z = z + 1 is a legit modular transformation in PSL(2,Z) (just

choose ( 1 1
0 1 )). Then, every element in H will be mapped in the strip given by −1

2 ≤ Re(z) ≤ 1
2 :

[g · z] ∼ |z| ≤ 1
2 for g : z 7−→ z + n with n ∈ Z (76)

(with g · g(z) = z + 2, g−1(z) = z − 1)

Theorem 27. The fundamental domain for the group PSL(2,Z) is the set

D =
ß
z ∈ H

∣∣∣ |Re(z)| < 1
2 , |z| > 1

™
. (77)

In particular, there is a set theoretic isomorphism Mg=1 ∼= D.
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Proof. First, we show that D ∼= {z ∈ H | |Re(z)| < 1
2 , |cz + d| > 1 ∀(c, d) ∈ Z2}. We call this set D1.

Clearly D1 ⊆ D since if z ∈ D1, then for c = 1, d = 0 one has |z| > 1 and hence z ∈ D.

Viceversa, suppose z ∈ D. Then if z = x+ iy we have |cz+ d|2 = (cx+ d)2 + c2y2 = c2(x2 + y2︸ ︷︷ ︸
>0

) +

2cdx+d2. Since x = Re(z) > −1
2 we conclude |cz+d|2 > c22cdx+d2 > c2−cd+d2 > 1 if (c, d) ̸= (0, 0).

It follows that if z ∈ D then z ∈ D1, so that D = D1.

Then, by the previous remark one has that D contains at least one point from each equivalence

class under PSL(2,Z). In particular, the only pairs of points which are equivalent under PSL(2,Z)

are the points on the boundary ∂D of D which are mapped into another by a reflection about x = 0.

Indeed, say z ∼ z′ and z′ = g · z, then Im(z) = Im(g · z) = Im(z)
|cz+d|2 which implies |cz + d|2 != 1. This is

possible for the following choices:

c = ±1, d = 0⇝ z 7−→ −1
z
,

c = 0, d = ±1⇝ z 7−→ z + 1

Clearly the transformation z 7−→ z + 1 maps the points with Re(z) = −1
2 to Re(z′) = 1

2 . Further, if

|z| = 1, then z = eiθ 7−→ −e−iθ. This proves that the only points which are identified in D are points

in ∂D which coincides upon reflection about x = 0.

Figure 4: The gray part is the fundamental domain D of PSL(2,Z). (By Original: Kilom691 Vector:

Alexander Hulpke - Own work based on: ModularGroup-FundamentalDomain-01.png, CC BY-SA 4.0,

https://commons.wikimedia.org/w/index.php?curid=59963451)
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