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Note to the reader:

These lecture notes are a typed up version of Dr. Simone Noja’s handwritten notes from the course
“Mathematical Aspects of String Theory” he teached during the winter semester 2022/2023 at the
university of Heidelberg. The courses were meant as a mathematical supplement to the lectures in
String Theory held by Prof. Johannes Walcher during the same time. Please note that there are
probably a lot of typos everywhere!

A main reference is the textbook “Complex Geometry: An Introduction” by Daniel Huybrechts.

1 Elements of Complex Analysis

1.1 Elementary Characterisations

Definition 1 (Analytic Function). Let U C C be an open subset (in the complex topology). We say
that F' : U — C is analytic in U if Vzg € U IB:(2p) such that F has a Taylor series expansion in
z — 2, i.e.
o0
F(z) = Z an(z — z0)" with a, € CVn e Ny (1)
n=0
converges uniformly and absolutely.

Remark. Representing C" = R™ @ iR" one writes z = z + iy with (z,y) € R" © R". In particular
Coz=x+1w.

It follows that F': U — C can be considered as complex functions of two real variables:
F(z) = Fe(x,y) = u(z,y) + iv(z,y) (2)
with v : Ur =+ R and v : Ur — R.

Definition 2 (Holomorphic Function). Let U C C be an open set. We say that F' : U — C with
F(2) = u(z,y) + iv(x,y) is a holomorphic function if there are u,v € C3 such that they satisfy the
following system of PDE’s:

Optt = Oyv and Oyu = —0zv (3)

These are the Cauchy-Riemann-FEquations.

Note. Requiring u,v € C* is stronger than requiring the existence of partial derivatives so that
the Cauchy-Riemann-Equations make sense (Looman-Menchoff Theorem: no need for C*® as C is

enough).
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Remark. Let T;C" & C" = R = spang{dw;,dy;}i—1, n. Then the complex basis is given by
T;C™ = spang{dz;, dz;} where one defines dz; := dz; + idy; and dz; := dx; — idy;.

Accordingly, one can give the dual basis of 7,C" = C" = R?" with 9,, := %((995Z — i0y,) and
0z, = %(&m + 0y, ).

Note that dz;,dz; and 0,,,0;, are indeed dual to each other allowing to rewrite the Cauchy-

Riemann-Equations in a more compact fashion:
O:f =0 (4)
This follows directly form the definition and rewriting:
o:f = %(833 +10y)(u(z,y) +iv(z,y)) = 0 < Cauchy-Riemann-Equations

Note (Holomorphic < Complex differentiable). It is possible to prove that a function is holomorphic
if and only if it is complex differentiable (in a neighbourhood of each point of its domain). Recall that

complex differentiability at z = zp € C means that the limit

o TR~ £(2)
h—0 h

exists with A € C. In particular, complex differentiability implies differentiability, but the converse is

not true.
Example 1. The function f(z) = z € C* is not complex differentiable!

Theorem 1 (Holomorphic < Analytic). Let U C C. Then F : U — C is holomorphic if and only if

it is analytic.

Proof. ’=": Let F' be holomorphic and let B.(z9) € U s.t. 0B:(z9) =: C with a positive orientation

and let z € B.(zp). We use the Cauchy Integral Theorem stating that in this setting, for all z € B (20)

F(z)zl,?gF(w)dw

21 w—z

one has

But then we can proceed as follows:

F(w) 1 F(w) 1
F(z) = 277@7§dw —zo) (z — 20) 27”}{dww (1_2_%)

w—2z0

2w j{ e — 20 ( —ZZ(())) 271'2 (% dw — n+1)(’z —20)"

0

Note: it is subtle to prove that the series converges uniformly and absolutely on C and therefore one

can indeed exchange § <» >_. To this end, observe that

(i) [£42| < a1 with M >0 on C,
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(ii) For all w € C exists an r € R such that

<r<l,

zZ—20
w—2z0

implying %F(w) < Mr™ on C. That is, we use the Weierstrass "M-test” to prove the
convergence.
<’ Let F be analytic with Taylor series expansion F'(z) = Y o2 o an(z — 29)" for all z € Bs(z9) C U.
We use the following generalisation of Cauchy’s Theorem for smooth functions:
Flz) = - ]4 F) 4y + / o F (w) 2040
oB z B

211 w — w— z

for all z € B.(z9) C C. Then, it is enough to observe the following facts:

(i) The partial sums {sq, 51, S2, . .. } where s, := >, (2 — 20)" satisfy Cauchy’s integral formula,

= ﬁ 9B IZ}E? dw near zy (because 9z(z — z9)" = 0).

Sn

(ii) By uniform convergence of the series, the same is true for F.

(iii) It follows that F(2) = 515 fyp () oldw

w—z :

(iv) Differentiation with 0z yields 0z fu(f’z) =0.
Thus, 0:F = 0. O
Remark. This proves that the the notions of analytic and holomorphic functions coincide. We will
mostly use the latter.

1.2 Fundamental Theorems in One Complex Variable

For a more precise treatment including proofs, see Dr. Kasten’s script “Funktionentheorie 1”7 for

example.
Theorem 2 (Liouville’s Theorem). Let F': C — C be holomorphic and bounded. Then F' is constant.

Proof. First, we show the following lemma:;:

Lemma 1. Let F' : U — C be holomorphic with U C C open and connected (domain). If F' =0, then

F is constant on U.

Proof. We need to show that F(zg) = F(z1) for all zp,z; € U. Since U is a domain, it is path-
connected. Let v : [0,1] — U with 7(0) = 20 and (1) = 21 be a path. Then 0 = [ F'(w)dw =
F(z1) — F(29) concluding the proof. O

Back to the proof of Liouville’s Theorem: We suppose that |F(z)] < M Vz € C.

(i) To prove that F' is constant. we only need to show that F’ = 0 in C which is indeed connected.
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(ii) Use Cauchy’s generalised integral theorem for a path v : [0,27] — C, 7(t) := 20 + Re' with
R >0 and zy € C:

1 F(w) 1 2" F(z0+ Re') . 1 2 o
F' :—/701 :—/ —R”dt:—/ F Re™) e "dt
(20) 271 Jy (w — 2p)? Y 9 Jo (Reit)? e 2R Jo (20 + Re) e

(iii) Use that F' is bounded:

y 1 2T
Oﬁ‘F(zoﬂﬁm o

Since 2o € C is arbitrary, it follows F’ = 0.
Hence, using the previous lemma, we are done. ]

Note. This is possibly the most striking difference between real and complex analysis, e.g. sinc : C —

C is unbounded!
Note. It implies that there is no (bi-)holomorphic function C — B1(0), i.e. C % B1(0).

Theorem 3 (Maximum Principle). Let U C C be a domain and F : U — C holomorphic and non-
constant. Then |f| has no local mazimum in U.
In particular, if U is bounded and F can be extended to a continuous function Fg : U — C, then |f]

takes its mazxima on the boundary OU .

Theorem 4 (Identity Theorem). Let U € C be a domain, f,g: U — C be holomorphic and let V. C U

be an non-empty subset such that f(z) = g(z) on V. Then f =g in U.

Theorem 5 (Riemann Extension Theorem). Let F' : B:(z) \ {z0} — C be a bounded holomorphic

function. Then F can be extended uniquely to a holomorphic function F : B:(z9) — C.

Definition 3 (Bi-holomorphic Function). Let U,V € C be open subsets and f : U — V holomorphic.

We call f bi-holomorphic if it is bijective such that f~! is also holomorphic.

Theorem 6 (Little Riemann Mapping Theorem). Let U C C be a simply connected and open subset
in C. Then U is bi-holomorphic to the unit ball B1(0) C C.

Theorem 7 (Residue Theorem). Let F' : B:(z0)\{z0} — C be holomorphic with an isolated singularity
in zg. Then F has a Laurent Series Expansion at zg
> 1

F(z) = > an(z—20)" with Resy(z) = a_y = ~— 7|{z—zo|:e/2 F(z)dz (5)

~ 211
n=—oo

and o, € CVn e Z.
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1.3 Several Complex Variables
We now consider the case with more than one complex variable.

Definition 4 (Holomorphic Function (n > 1)). Let U C C™ and let f : U — C such that f € C™.
Then f is holomorphic if the Cauchy-Riemann-Equations (c.f. |3)) with f = u + v are satisfied for all

zj=x;+w;, j=1,...n.
Note. Once again, we can rewrite this in a more compact fashion:

Op. U = Oy, v
G ©95,f=0 (6)
Gyju: —8;6].11

with 0z, = 3(0,, + i0y,).

Note. When n > 1, we take polydisks as a basis for the topology:

B.(w) = {z€C": |z —wy| <&, Vi} (7)
Theorem n=1|n>1

Cauchy integral formula v v
analytic = holomorphic v v
Liouville’s Theorem v v
Maximum Principle v v
Identity Theorem v v
Riemann Extension Theorem v v
Riemann Mapping Theorem v X

Table 1: Comparison between n =1 and n > 1

Counterexample to the Riemann Mapping Theorem: C? D Buy(0) S D
Note. Viceversa, there are also theorems which hold true in several variables but not in one variable.

Theorem 8 (Hartog’s Extension Theorem). Let € := (e1,...,e,) and £ := (g},...,e),) withn > 1

such that €; < g; for alli=1,...,n. Then any holomorphic map f : B:(0) \ Be(0) = C can uniquely
be extended to a holomorphic map f : B:(0) — C.

“Slogan”: A holomorphic function in C" D U\{zp}, z0 € C" extends to a holomorphic function in all U.

Counterexample in d = 1: f(z) = 1 is holomorphic on C\ {0}, but it cannot be extended to a

holomorphic function in C!
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2 Elements of Sheaf Theory

Local Properties of Holomorphic Functions: a holomorphic function F' : U — C with a domain U C C

is determined completely by local information.
Remark. This is spelled out precisely in the Identity Theorem (Theorem ) in complex analysis.

Theorem 9. Let U € C be a domain and let F,G : U — C be holomorphic. If V C U is a non-empty
open subset and F‘V = G‘V, then F =G on U.

Locally, a holomorphic function is represented by its Taylor Series Ezpansion: we now want to
study holomorphic functions from this local point of view, i.e. we “forget” the domain of definition
of F, but only take into account its “local representations”. This leads to the notion of sheaves of

holomorphic functions.

Definition 5 (Presheaf). Let X be a topological space. We say that F is a presheaf (of abelian
groups) if

1) X DU~ F(U) € Obj(Ab) (F(U) is an abelian group for all U € X)

2) For all inclusions U C V, there is a homomorphism of abelian groups, namely the restriction

morphism:

Definition 6 (Restriction Morphism). This is a homomorphism of abelian groups,

(V= U)w (p} : F(U) — F(V)), such that
1) pf = idy
2) plyopl =pY for WCVCU
We introduce the following notation: p{(s) =: S‘V.
Note. Usually, one defines F(0) := 0 (the trivial abelian group), but this is not an axiom.
Note. Elements in F(U) are called sections (of F over U).

Definition 7 (Sheaf). A presheaf on X is called a sheaf (of abelian groups) if it satisfies the following

conditions (sometimes called sheaf axioms):

1) Local Identity: Let {U;} be open sets in X and s,t € F(U) with U = {J; Uj. If s,
J
for all j, then s =t in U.

- t\Uj

2) Gluing: Let {U;} be open sets in X with U = {J;U;. Then for any collection of sections

sj € F(U;) with sjiUmUj = Si|UimUj for all 4, j, there always exists a global section S € F(U)

such that s|U, = s; for all j.
J
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Note. By condition 1), the global section in 2) is unique.

Example 2 (Sheaf of Holomorphic Functions). Consider X = C". Then
C"DOUw+— OWU):={f:U — C| f is holomorphic} is the sheaf of holomorphic functions.

Remark. Although sheaves are defined on open sets, the underlying topological space X consists of
points. It is therefore reasonable to try to isolate the behaviour of a sheaf at a point a € X.
Conceptually, we do this by looking at a small neighbourhood of the point. If we look at a sufficiently
small neighbourhood U, of a, the behaviour of the sheaf will be the same as the behaviour of the sheaf
ina e X.

Problem: No single neighbourhood will be ”small enough”, so we have to take a sort of ”limit” proce-

dure. This leads to the concept of the direct limit:

(i) Let F be a (pre)sheaf on X. For a € X, we consider {U,}, the set of all possible open neigh-

bourhoods and we consider the disjoint union [];; F(U,).

(ii) We introduce an equivalence relation on [[;; F(Us): let s € F(Uy), t € F(Uz) with Up,Us €
{Uy}: Then, define:

SNatZ<:>E|V€{Ua}, VU NU;y: S\V:t|v (8)
This means that we consider equivalent the sections that coincide locally.

Definition 8 (Stalk). The stalk of a presheaf F at a € X is (the abelian group)
Fo=limF(U) = [] F(Ua)/ ~a (9)
Ugsda
Definition 9 (Germ). Elements s, € F, are called germs of a section s € F(U,), a € U,. A germ
is represented by a pair: s, = (U,,s). In particular, there is a map p, : F(U,) — F, such that

S Sq = pa($).

Question: For f € O(U), holomorphic in U € C", what is the relationship between Ocn o > f, (stalk
of f in a € U) and the (convergent) Taylor expansion of f at a € U?

This leads to the following theorem:

Theorem 10. Let a € U C C". Then the stalk Ocn 4 is isomorphic to the algebra of convergent

Taylor series at a € U, C{z1 — a1,... 2z, — an}:

{f, g are holomorphic in U, and give rise to the same germ fo = gq at a}
<~

{f, g have the same Taylor expansion at a}
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Remark. We could restrict to the case a € U being the origin since translations 7,f(z) := f(z — a)

induce an isomorphism of algebras Ocn , = Ocn .
Remark. Ocn o and C{z1,...,2,} are C-algebras, i.e. they satisfy
Sata=1(51)a, Sa+tta=(s+1)a, Asq=(As)q. (10)
We will now focus on some properties of Ocn g = C{z1,..., 2}
Theorem 11. The ring Ocn g = C{z1,...2,} is “very nice”. In particular:
1) Ocn o s local (unique mazimal ideal)
2) Ocn g is OFD and Noethernian (follows from the Weierstrass Division Theorem,)

Finally, we introduce the notion of meromorphic functions. We recall that in one variable, one has

the following definition:

Definition 10 (Meromorphic Function on U C C). Let U C C be open. A function f : U — C is

meromorphic if f : U\{p1,...,pr} — C is holomorphic and f has poles of finite order at every point

{p1,.. ., pi}-

One shows that locally f ~ £ with ¢ holomorphic. This generalises to C":

Definition 11 (Meromorphic Function on U C C™). Let U C C" be open. We say f : U — C is
meromorphic if it is locally a quotient of holomorphic functions, i.e. f focally § with g,h : U — C
holomorphic.

This means that as a function f : U\ S — C, there exists an open over |J; U; of U and holomorphic

functions f;, g; : U; — C such that f\Ui\S - hy; vns = Jilups:

Example 3 (Sheaf of Meromorphic Functions). U + Kcn(U) := {f : U — C | f meromorphic}

Consider the stalk of K¢ at a point: As it can easily be imagined, the stalk at a point a € C" is such
that the following holds:

Theorem 12. Let a € C". Then Kcn g = Craurent{z1 — a1,...,2n — an} (convergent Laurent Series

ata € C").

Note. Kcn, is a field (no ideal except of itself and the trivial one) and indeed Kcn 4 is the field of

fractions of the integral domain Ocn g4, that is:
KC",a = Frac (OC",a) = CLaurent{xl —ar,...,Tn — an} (11)

This “justifies” that f = { locally.
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3 Complex Manifolds

3.1 Basic Defintions

We let X be a topological manifold (i.e. it has the Hausdorff property and it is locally homeomorphic

to an open set V € R™).

Definition 12 (Complex Chart). A local complex chart (U, ) of X is an open set U C X with a
homeomorphism ¢ : U — ¢(U) C C* (where C" & R?").

Compatibility: Let (U, ¢o) and (Ug, @) be two complex charts. We say they are compatible if the

transition functions

PBa ::¢Bo¢;1:¢a(UaﬂUg)—><p5(UaﬂUg) (12)
ccn ccn

are holomorphic.
Note. Observe that p,3 = @q © gogl is holomorphic too.

Definition 13 (Holomorphic Atlas). A holomorphic atlas of a space X is a collection of local charts
A = {(Ua, ¢a)}per such that X = {J, U, and all the transition functions ¢,g are bi-holomorphic

for all «, 8. In this way, each pair of charts is compatible.

Definition 14 (Holomorphic Structure). A holomorphic structure on X is a maximal holomorphic
atlas A = {(Ua, Ya)}oer- Maximal means that if (U, ¢) is a chart and compatible with (Us, ¢q) for
all a € I, then (U, ¢) € A.

Definition 15 (Complex Manifold). A complex manifold is a topological manifold together with a

holomorphic structure.

Note. A holomorphic atlas B = {(Ug, ¢g)} 5. ; determines a unique maximal atlas A with B C A. As
such it determines the complex manifold.

The atlas is given by A = {(U, ¢) : (U, ¢) is compatible with (Ug, ¢3) V3 € J}.

Remark (Complex Manifolds and Real Manifolds). Given a complex manifold X, we can think about
it without its holomorphic structure:
If dimc X = n, then X defines a differentiable manifold X, with dimg X, = 2n. A complex chart

(U, p) gives rise to a real chart (U, @) via

90:(217’-'7271)<—>¢:(x17"’7xn7y17"'7yn) (13)

with z; = z; +iy; forall j =1,...,n.
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Theorem 13 (Complex Manifolds and Orientability). Consider a complex manifold X as a real

manifold X,. Then X, is orientable.

Proof. Any transition function ¢g, = gpﬂogogl : C" — C" is holomorphic and so is its inverse. We have
that det (Jrpga) = |det (choga)]2 > 0 (exercise!). Notice that it is non-zero as g, has an inverse.
Now Jrpga is the jacobian of the transition functions ¢g, on X,. Then every transition function
has positive determinant: it follows that X, is equipped with a positive atlas, hence it is (positively)

oriented. O

Consequence: Not every (even dimensional) differentiable manifold X2 can be seen as the underlying

differentiable manifold of a complex manifold.

Definition 16 (Holomorphic Functions). Let U C X be an open set. Then f : U — C is holomorphic
if for charts (Uy, o) € A with U, NU # 0

fopl:wa(UynNU)—C (14)
is holomorphic.

Sheaf of Holomorphic Functions:
X2DOUw+— Ox(U):={f:U — C| f is holomorphic} (15)

Note. It follows from the definition that using a chart (U, ¢) with ¢(Z) = 0 for Z € U, then Ox , =
Ocn . Stalks coincide with those of C".

Remark. Let (U, = (21,...,2,)) a complex chart with x € U, ¢(x) = 0 and let f : U — C be

holomorphic. Then we have

[e.9]

(f ) gp_l) (w) = Z ak17,,,7knwlf1 wﬁ” (16)
K1, kn=0

with € U and ¢(z) = w. This means that f(z) = (f o (pfl)) (p(x)) = Dok Oky,kn (o1(x)kr .. (on(x))kn.
—— ——

z1(x) zn ()
Hence: f = 37;° aﬁzfl ...zF the Taylor expansion at a point.
Definition 17 (Holomorphic Map X — Y). A map f : X — Y between complex manifolds is
holomorphic if g o fo gzt : wa(UaN f71(V3)) — ©5(Ug) is holomorphic for all charts (Uy, ¢a) of X
and (Vg,v3) of Y. It is sufficient to verify in one atlas of X and Y.
We say that the manifolds are isomorphic, X = Y, if there exists a holomorphic homeomorphism

X — Y. Note that f~! is holomorphic as well.

We now come to a crucial result:
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Theorem 14 (Global Sections of Ox). Let X be a compact and connected complex manifold. Then
Ox(X)=C.

Proof. Let f : X — C be holomorphic. Then, f is continuous and so is |f|. It follows that |f]

has a maximum at some x € X since X is compact. But, if (U,¢) is a chart with z € U, then

1

fop ™ :pU) — Cis locally constant by the Maximum Principle (theorem . Finally, since X is

connected, the identity principle (theorem [4) implies that f has to be constant. ]

Comment: There are no non-constant holomorphic functions and as such there are no embeddings in
C™. Usually, compactness makes life easier. Instead, it tells us here that we are allowed to deal with
holomorphic functions because they are all constant.
3.2 Examples
Complex Projective Space
As usual, we define the complex projective space

P" (:=CP") := (C"Jrl \ {O}) / ~, (17)

where u ~ v < u = tv for t € C* and u,v € C"*1\ {0}. Note that there is an action (proper and

free) of C* on C"1\ {0}; the quotient by this action is P". In other words, we let

7 C"\ {0} — P"

(18)
(0. yTp) —> [Xo t @y - 2 ap]
This is the quotient map and [zg : - - : 2] are called homogeneous coordinates.
Topology: P™ has the quotient topology: U C P™ is open if 7=1(U) C C**1\ {0} is open.
The usual atlas Ap» = {(Uj, ¢;})j=0,..n is given by
P Uj — C"
_ 19
sl (20,05, ) )
n x] ) ) x] ) Y xj
with Uj = {[zo : -+ : xp] : ; # 0}. Notice that the inverse map is given by goj_l (X1, xp) o [

N R
Compatibility: As an easier example, we verify the compatibility between (Uy, ¢o) and (Uy, ¢1). The

transition functions yield:

gooogofl:gol(UoﬂUl)—>UoﬂU1—><p0(UoﬁU1)

1 x5 T
(xo,xg,...,xn)»—>[:cozlz---::cn]»—><—,—,...,—n)
o Zo Zo

Note that oo o @7 =: o1 : 91 (Us N UL) — @o(Up N UY) is indeed holomorphic.
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Lemma 2. P™ is compact for any n.

Proof. We let §?"t! = {u € C" ¢ |ju|| = /3, |uj[? = 1}. We know that S?"*! is compact and we
can observe that 7T|S2n+1 : §2n+l s P7 s surjective. Indeed, if p = 7(u) € P, there exists a t € C*
such that |[tu|| = 1 which implies tU € S*"*! and 7(tu) = 7(u) = p. Now, the map 7 is continuous

and maps compact sets to compact sets. O

Note. 7 : C"*1\ {0} — P" is holomorphic, hence continuous. Indeed, let us check this using atlases

{(C™1\ {0}, idgn+1\fo3)} on C"F1\ {0} and the standard atlas {(Uj, ¢;)}; on P". We look at j = 0:

. z Zn
T~ o o T o ident1\ 03 (205 -, 2n) = o ([20 1+ 1 20]) = <Z(1],...7ZO>
The map is clearly holomorphic on 7~ (Uy) C C**1\ {0}.
Remark (Sheaves on P"). First, we define the sheaf of regular functions on P™:
Ur— Opn(U) :={f € Ocnsn\joy (7 '(U)) : f(Az) = f(z) Vo € 71 (U),A € C*} (20)

Exercise: Let (zo,21) € C" with zg # 0. Show: Then, F' = I € Op1(Up).

« Notice that f € Ocn+1\ o (m~'(U)). The corresponding regular function F on U is well-defined
as F(n(2)) = f(2)

e Notice that Opn is a sheaf of rings.
The sheaves Opn (k): Let k € Z and we define:
U — Opn (k) (U) i= {G € Ocuin\joy (n1(1)) : G(Az) = NG(x) Vo e 7 (U), e C*} (21
This sheaf has the following properties:
o It is an abelian group with (G + H)(z) = G(z) + H(x).
o It is a Opn(U)-module with (fG)(x) = f(7(x))G(z) for f € Opn(U).
o It is locally free (of rank 1), i.e. for all U C U; one has an isomorphism

_— Opn (k)(U) — Opn(U) (22)

G 2;"G

It follows from this that the product map Opn (k) ®0p, Op= (1) =5 Opn (I+k) given by G H —

GH is an isomorphism.
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Complex Tori

Definition 18 (Lattice). Let C™ be seen as a R-vector space and consider 2n linearly independent

vectors {wr, ..., ws,} over R, that is C" = Rw; @ - - - @ Rwa,. A lattice in C™ is defined as the subset
2n

A= {)\GC":)\:Zkiwi, kiez} (23)
i=1

Note. A C C" is an additive subgroup of C" and it is isomorphic to Z%".
Definition 19 (Complex Torus). A complex torus is defined as the quotient C*/A =: A
Remark. As a group, we have C"/A = R2" /72" =~ (R/Z)*" = (§1)2", This explains the name "torus”.

Topology: It is worth observing that A(™ can also be seen as a quotient with an equivalence relation,
ie. A = C"/ ~, where z ~ w & z —w € A. It follows that A™) is a topological space with the

quotient topology, moreover it is Hausdorff.

o m:C" — C"/A is open: Indeed, let V' C C" be open and consider 7(V'). One has that w(V)
is open if 771 (7(V)) (the "saturation” of V) is open, but 7~ 1(m(V)) = [ yea(V + A) where the
right hand side is open because it is an infinite union of (translated) open sets in C™.

e A™ is compact: We have A = 7(A) with A = {3, t;w;, ¢ € [0,1]}. But since Lambda is

compact and 7 is continuous, A is compact. (Notice A = (§1)27)

Charts and Atlas: For z € A™)| let us consider some z € C" such that 7(z) = z.

(i) Choose a neighbourhood V' C C” for z € C™ such that my := 7T|V = m (V') is a bijection. Notice

that this is always possible, e.g. using V = {z + 32, t;w; : [t;| < % Vi=1,...,2n}

(ii) Then one has in particular that if 2,2’ € V, 2 # 2/ + A so that z # 2’ unless z = 2’. This means

that my V' — w(V) is injective.
(iii) Since 7y is open and injective, it is a homoemorphism.

Thus, (7(V),7y,') is a complex chart for z € AM™).

Compatibility: Let V, W C C*, VAW # § and 7(V), 7(W) € AM™. Then, we have ;! o (m,')~! :
o 7(V) N w(W)) — myt (m(V) N w(W)). Consider a point z € ' (m(V) Un(W)) with 2/ = 1,/ o
(my")H(2) and apply my : W =5 71(W) to find 7y (z) = mw (). This implies 7(z) = 7(2’), so there
exists a A € A with 2/ = z + \. Hence: 7,7 o (m,")71(2) = 2 + \.

Conclusion: Transition functions are translations by elements in A for any choice of V and W. In

particular, they are holomorphic and A™) is a complex manifold.
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Note. 7 : C" — A(™ is holomorphic. Indeed, restricting 7 to the sets V where it is a bijection yields

Tt omy oiden = iden.
Remark (Sheaves on A™). The sheaf of regular functions on A™ is given by

U Oym(U)={f €0cn (r7'(U)) = C: fz+N) = f(2) Vzen ' (U), VA€ A}  (24)
The relation with F : U € A™ — C is given by F(n(z)) = f(z). Sometimes, these functions are
called A-periodic functions.

3.3 Complex Submanifolds

Definition 20 (Complex Submanifold). A complex submanifold of a complex manifold X with
dimc X = nisasubset Y C X such that Va € Y there exists a local complex chart (U, ¢ = (21, ..., 2n))
of X, called the preferred chart, with ¢(a) = 0 and

oUNY)={uecplU)CC":upy1 =+ =u, =0} (25)

Alternatively, there exists a holomorphic atlas for X, A = {(U,, ¢a)} such that ¢, L UaNY =5
©0a(Uq) NCF where CF < C”, (21,...,21) — (21,...,21,0,...,0).

Note that codimxy Y. =dim X —dimY =n — k.

{UaﬂY

Note. A complex submanifold is itself a complex manifold of dimension k. If (U, ) is a preferred
chart, one obtains a complex chart as above by using (U NY, ¢|yny). Note that the compatibility of

these charts follows from those of X.

Note. We now want to provide methods to obtain complex submanifolds and we will see that, on a

very general ground, there are two such possibilities to do so:
1) The preimage of a point via a "sufficiently regular” map is a submanifold.

2) Under strong conditions, the image ¢(X) of a map ¢ : X — Y is an embedded submanifold of

Y. This means that ¢(X) C Y in some "non-singular” way.

Theorem 15 (Preimage Manifold). Let ¢ : X®) 5 y(m) pe g holomorphic map between complex man-
ifolds withn > m and let b € p(X™) C Y™ be such that the rank of o is mazimal, i.e. rank(Jcp) = m

for all a € ¢~ 1(b). Then ¢~ 1(b) is a complex submanifold of dimension n — m.

Theorem 16 (Embedded Manifold). Let ¢ : Y < X be an injective holomorphic map with m =
dimY,dim X = n and m < n such that ¢ has mazximal rank m on allY. IfY is compact, then o(Y")
is a submanifold of X and ¢ : Y — o(Y) C X is a holomorphic map. We say that p(Y') is isomorphic

toY and ¢ is an embedding of complex manifolds.
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We will now look at some examples which are characterised by the fact that the submanifold is

embedded into some P™:
Example 4 (Veronese Map). Consider

w4 P" — P™

(26)
[20: - wm) — [xd a8 a2y

with m = (”:d) — 1. It maps [zg : -+ - : ] in all possible monomials in d variables of degree d. The

case n = 1 corresponding to ¢q(P') is called rational normal curve.

Example: The twisted cubic curve:

V3 pl . p3
(27)
[5,t] — [s° : st : st? 2 7]
Example 5 (Segre Map). Consider
Onm : P x P — plrth)(m+1)—1
7 (28)
([$0 : "'2$n]a[y0 : "'iym]) — [330y01960y1 e LY -1 XY ifﬂnym]
Example: The quadric (in P3):
o11: Pt x Pl — P3

(29)

([s,t], [u,v]) — [su: sv : tu : tv]

Example 6 (Complete Intersections). We let f be a homogeneous polynomial of degree d, i.e. f(tx) =
tdf(x) Vt € C. Then:

d - of d—1 =1 of
%f(tx)zgaxi(mi)m:d't flz) = ;:cia—%(x):d-f,
the Fuler equation.
Theorem 17 (Complete Intersections). Let fi,..., fm € Clxo,...,zn] be homogeneous polynomials
of degree dj, j =1,...,m for some m <n. We have the projective algebraic set
Y:i={zeP": filx)=---= f(z) =0}. (30)

Then, if rank(0y, f;) = m Ve € Y, Vk=0,...,n, Vj =1,...,m, Y is a complex submanifold of P"

which is compact of dimension n —m. We call Y a complete intersection.

Note. This realises complex (sub)manifolds as the zero locus of homogeneous polynomials in P™.

DRr. SIMONE NOJA PAGE 16



MATHEMATICAL ASPECTS OF STRING THEORY

Example 7 (Conic in P? as a Complete Intersection). Consider
Y = {[zg : 21 : 32] : P(z) = mo22 — 2] = 0} (31)

with a homogeneous polynomial P of degree 2. We want to show that Y is a complex submanifold of
P2 of dimension 1 as a complete intersection of degree 2 in P2. This means that we need to show that

rank(0; P) = 1:

~ (ap oP OP

|
e _—, T e , —2 , = 0 R e = — 0
9zy’ Oz 5:62) (22, =221, T0) T0 = T1 = T2

As 0 ¢ P2 it follows that rank(9,P) = 1.

Complete Intersection and Veronese map ¢z (P!): (degree 2 rational normal curve) Actually, the above

complete intersection is isomorphic to the Veronese variety
po 1 P1 — P2
(32)
[s:t] — [s%: st : 7]

o ¢2(P?) CY: Indeed, P(s%, st t?) = s%t? — s — 2 = 0.

e Y C o(P?): Consider [zg: x1 : 22] € Y. We suppose xg # 0 so that we assume [1 : z1 : 22]: we
have x5 = 23 so that x = [1 : 21 : 23], but [1 : 21 : 23] = @a([1 : 1]). Now, suppose z9 = 0 which

implies 1 = 0 so that one has x = [0: 0 : x2]. But then: [0:0:29] =[0:0: 1] = v2([0: 1]).
Thus: Y = P!,
Example 8 (Quadrics in P? and Segre Map). Similarly as above, one can show that

X X
o1 (PYx P 2z eP?:det O M) —ol ~pl xplcp3 (33)

Tro I3
N.B.: On the other hand, op3(P!) (twisted cubic curve) is not a complete intersection!
Theorem 18. 1) Any (smooth) conic in P? is isomorphic to P*.

2) Any (smooth) quadric in P3 is isomorphic to P! x P

3.4 Submanifolds and Sheaves: Ideal Sheaves
Any sheaf F on Y <Yy X can be considered as a sheaf on X: The push-forward or direct image sheaf:

ix : Sh(Y) — Sh(X)
(34)
F— i F
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where we define X D U ~ i, F(U) := F(i~}(U)) (i *(U) is open in Y). If p : F — G on Y, then
ix(p) : i F — 4G is a sheaf morphism on X. This means that a Oy-sheaf F can be looked at as a
Ox-sheaf supported on Y.

Further, the restriction of holomorphic functions yields a natural surjection: i# : Ox — iQy (this
is seen as a sheaf on X, it is simply denoted as Oy).

It follows that one has a short exact sequence of sheaves (on X), the structure sheaf sequence:

0 Iy — Ox 5 0y —0 (35)
The sheaf Iy is called ideal sheaf:
X2U+— Iy(U):={f:U — C: f is holomorphic and vanishing on ¥ C X'} (36)

This is the way one looks at submanifolds on a sheaf-theoretical ground.

4 Vector Bundles and Line Bundles

4.1 Bundles, Sections and Adjunction

Definition 21 (Holomorphic Vector Bundle). A holomorphic vector bundle of rank r on a complex
manifold X is a complex manifold £ together with a surjective holomorphic map 7 : £ — X such

that
1) Each fibre E, := 7~ !(z) is a complex vector space of dimension n.

2) There exists an open covering X = [,e;Ua and a family of bi-holomorphisms called local
trivialisations

o i N Uy) —> Uq x C" (37)

such that they are linear isomorphisms on the fibers and the following diagram commutes:

7 Uy) 22 Uy x CT

\ Jpl
Ua
Remark (Transition Functions). We can look at the transition functions between the local triviali-

sations:

Yaotpy': (UaNUg) x C" — (Us NUg) x C -

(.TC, U) — (;Ua gaﬂ(l’)U)
Remark (Important!). The map z — gqg(z) is holomorphic and one has go5(z) € GL(r, C), together
with
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1) Jao = idr
_ -1
2) Gap = g,@a
3) Yoy = GaB9py (because gaggsygra = id;).
N

cocycle conditions in UaNUgNUy

Note. The data {Uqs}acr, {9as}a,ger) determines the vector bundle "uniquely”, E <— {Uq, gas}-

Proof of the remark[{.1l For all x € U, N Up there exists a gog(x) € GL(r, C) such that ¢us(z,v) =
(z, gap(z)v) since Yag| 1) is an isomorphism of vector spaces and fibre preserving. On U, NUgNUs,,

we have:

Yap © Yoy (2,0) = Yap (2,95, (2)0) = (2, gap(@) - g5y(2) v)
N————

matrix multiplication

Yar (2, 0) = (2, gary (2)0)

Since we have 1,5 0 13, = g © (wgl o1g)o w;l = 1)y 0 @/;;1 = Ya~, this implies gog © g3y = gary- In

addition, we can conclude:
e a==7 gaa© Jaa = Joa = Gaa = id.
* Q=7 gaB °Y9Ba = Jaa = Jap © Ypa = id.
O

Definition 22 (Holomorphic Section). A holomorphic section is a holomorphic map s : X — E such

that it preserves fibres of E (i.e. mos =idx). Usually, it is only defined locally: s: U — E.
Note (Zero Section). There is always at least one global section, the zero section: © +— 0 € E; Vx € X.

Note. For all open sets U C X the space I'(U, E) := {s : U — E holomorphic} is naturally a complex
vector space.

Local Representation of Sections: Consider E <— (Uq, gag) and s € I'(U, E). Then

Ua MU 3 25 5(z) 22 (2, sa()) € (Uy NU,CTY, (39)

note that s, : Uy, NU — C" is holomorphic! Under a change of trivialisation, one has:
Yap (z, 35(1‘)) = q © 7/}5_1 o g (s(z)) = Ya (s(z)) = (7, 80(7))
Yap (7, 55(2)) = (7, gap(®)ss(x))

Thus: sq(z) = gap(x)ss(z).
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Remark. Conversely, going in the other direction, a collection of local sections s, : U, — C" deter-
mines uniquely a “global” section s : U — E. Indeed, s(x) = ¥, (z, so(x)) and this is independent of

the chart:

Vo (2, 50(2) = Vo' (2, gap(@)s(2)) = U5 0 (Y 0 U5 (2, 58(2) ) = 5" (x, 55(x))

Local Description of S : U — E:

5 {Uq, 50 : Uy — C",50(2) = gap(x)sp(z)} (40)
Now, we discuss some examples of holomorphic vector bundles:

Example 9 (Tangent Bundle). The tangent bundle is defined as
e HTG’X’ ’Ua’i>a (41)
acX

and the transition functions are given by gag = (J (240 zﬁ_l))t, whereas the sections are vector fields:

X(a) = ¥, X(a)dy,|, € T(U,TX)

Example 10 (Cotangent Bundle). The cotangent bundle is defined as

QY :=hom (T'X,X xC) =T*X (42)
and is dual to the tangent bundle. Its transition functions are given by gog = J(2q © zﬂ_l) and the
sections are holomorphic 1-forms: w(a) =Y, wi(x)dmi}a

Remark. We have

( ¢ (Ua, gap)) <= (B* ¢ (Ua,ghs ) (43)
Also, we can take direct sums E & F', tensor products E ® F', exterior products, etc. to construct new
vector bundles.

This leads to a last example:

Example 11 (Canonical Bundle). The canonical bundle is defined via the determinant:

dim (X

It is a line bundle, that is a vector bundle of rank one.

Definition 23 (Morphism of Vector Bundles). For vector bundles 7 : E — X of rank r and

7w F'— X of rank k, a map ® : E — F is called a morphism of vector bundles if

E—2 L F

1) it commutes with the projections: mp o ® = mp, \ /
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2) it is linear on the fibers: ®x : Ex — Flx is linear,
3) it has constant rank: rank ®x does not depend on z € X.

Local Representation of Morphisms: It follows that we have a map (z,v) — (z, ®o(x)v) with &y :
Plug
Ely, ——— Flg,

Uy — Mat(l x r,C), giving the local representation. We have Jw lwa )

U, xCr 22,y xCl

where @, acts as the identity on the first component and is linear on the second component.

Change of Trivialisation: Just like before, one has

and
(2, Pa(2)) = pa 0 Doy (3,0) = a0 (¢5' 0 p5) 0 o (¥5" 0vhs) 0 v  (x,v)
= a0y o(ppo®ouy!)oysoyyt(z,v)
= 00 095" 0 (z,D5(x) © gga(x)v)
= (@, hap(@) 0 () © gga(2)v)
50

O E 5 Fo {cpa - Uy — Mat(r x ,C) : By () = hag (J:)@g(:n)@(x)}.

Note that this is just the ”"change of basis” of a matrix: ® = hdg~!

Remark (Injective Morphisms). The map ® : £ — F (with rank £ = r <[ = rank F') is injective if

it behaves like an inclusion, i.e. there exist trivialisations such that

gpao¢o¢;1:UaxCr—>UaXCl

45
(a:,(vl,...,vr))+—>(x,(vl,...,vr,O,...,O)). (45)
N——
l—r
For ® injective one can write "nice” transition functions,
ap(@)y x
|
% 1 heg(x)

where g, is the transition function of E and k,g is the transition function of F'.
The above situation is represented by a short exact sequence

0—F—- 3 F—" S F/E—0 (46)

injective surjective

with Im(7) = ker ().
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Definition 24 (Pull-back Bundle). Let f : Y — X be holomorphic and E < (Uq, gag) be a vector
bundle on X. Then f induces a fiber bundle on Y by composition, given by f*E < (f~1(Ua), gago f)-
This is the pull-back bundle. Note that Ey) = f*E,.

Regarding submanifolds, for the inclusion i : ¥ — X, we write E |Y := ¢*F and note that E|Y ~

(Y'n Uwgaﬁ\UamUBmY)'

Definition 25 (Normal Bundle). For an inclusion i : Y — X, consider TX|Y :=1*TX. Then the

normal bundle is given by Ny/ x  =TX |Y /TY . Alternatively, one can look at an short exact sequence:
0—TY 5 TX|, — TX], /TY — 0 (47)
Theorem 19 (Adjunction Formula). Let Y < X be a complex submanifold. Then
Ky = Kx|, ®0y det Ny x. (48)
Proof. Just take the determinant of the normal bundle sequence:

0—TY — TX|, — Ny/;x —0

— det (TX|,) = det(TY) ® det (Ny, x)

Note that det(T'X|,) = det(TX)|, as det(gas|,) = det(gap)|y Taking the dual yields Kx|, =
KY X det(Ny/X)*. It follows that Ky = KX|Y ® det(Ny/X). ]

Analogously, consider the dual of the normal bundle exact sequence:
0—Ny)x — T"X|y, — TV —0
This is the canonical exact sequence.
Remark. Later, we will see a special case of this for codimension one hypersurfaces in P”.

We will now see the relation between vector bundles and sheaves:

4.2 The Relation of Holomorphic Vector Bundles and (locally free) Sheaves

Definition 26 (Sheaf of Sections of "E). Let 7 : E — X be a holomorphic vector bundle. We define
the sheaf of sections of E:

Ur— E(U) :={s:U — 7Y E):mos=id, sis holomorphic } (49)
It is a sheaf of Ox-modules (here, Ox is the sheaf of sections of the trivial bundle X x C).

Theorem 20. There exists a bijection between holomorphic vector bundles of rank r and locally free

sheaves of rank r.
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”Proof”. Remember that £ is locally free of rank r if 5|U = OS’?T Clearly, &£ is locally free as F

[
is locally isomorphic to U x C". Also, by choosing the trivialisation ; : € |U, = (’)E‘Zr, the transition
maps 1;; := ;o ¢;1 : OIGJB:mUj = OIGJB;"HUZ, are given by a multiplication with a matrix of holomorphic

functions on U; N Uj. This constructs U > (U;, 145). O

5 Cohomology
Actually Cech cohomology.

5.1 Cech Cohomology

Definition 27 (p-th Cochain). Let X be a topological space with an open covering U = {U, };cs such
that X = U;c; U;. For ¢ =0,1,... and a sheaf F we define the ¢-th cochain group of F:

CI(U,F) := II FW,n---nU,) (50)
(i0y--yiq)ETITL
(i1<-<igq)

The elements of C4(U, F) are called ¢-cochains: they are given by a family of section as follows:
(in"'Q)ig,...,iqelq+1 : fio,...,iq e F (Uio Nn---NU; ) \V/(io, - ,iq) c Iq+1, 0 <--- < iq (51)
Note. (9 is indeed a group with component-wise addition.

Definition 28 (q-Cohomology Operator). We define a cohomology operator on C?(U, F):

§:CU(U,F) — CH(U, F)
g+1 (52)
(figysig = (0 )ig,.sigrs = Z(—l)kfi

k=0 Ot U e NUg 41

(Use the restriction morphism of F). Note that fio_“ o F(U. so we restrict to

g+1 zom~~-mﬁ;m--~qu+1)’

the intersection U;, N ---NU;, ., as to get an element in F(U;; N---N Uiqﬂ).

q+1

We have 62 = od =0, § is nilpotent!

Example 12. Consider C°(U, F), C' (U, F) and 6. Explicitly, one has

CO(U,F) = F(Uo) x F(Ur) x --- = [[ F(Ui) > (fi)ier
el
CYUF)=FUynU) x F(UgNUs) x---= [[ FWU:NU;) 3 (fij)ijer
i€l

80 COU,F) = CHU,F) « (6f)i = fﬂUmUj — fi

UiﬂU]‘ = 9i]

s CN U, F) = CHUF) © (6f)ijk = Firlv,ru,o0, — Fin

UiﬂUjﬂUk + fij|UiﬁUjﬂUk = gl]k
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Note that one can easily verify the nilpotency in this case
50 ot
(fi)— fi—fir— (fi = fi) = (f = fi) + (f = f3) =0,

so indeed ' 0 0 = 0.
Definition 29 (q-Cocycles/q-Coboundaries). Since § is a group homomorphism, we define

o g-cocycles: ZY (U, F) :=ker(§ : C7 — C1+>)

e g-coboundaries: BY(U,F) :=Im(§:CI~1 — C9)
Note that since 62 = 0, we have a € B! = « € Z9tL

Example 13. Consider Z°(U,F) and Z'(U, F). By the very definition one has

Q) (fi)eZ2° < (6f)i; =0Vi,j = fJ|UimUj = fi|UmUj’ so there exists an f € F(X), a global section

(compare with axiom 2) for sheaves).

(i) (fij) € 21 & (0f)ije = Vi, 5.k & fir|y, 00, = Fis

cocycle relations

UiﬂUjﬂUk + f]k UiﬂUjﬁUk

It follows that f;; = 0 (using i = j = k) and fi; = —fj; (using i = k).
Note that one can take the quotient as usual. This leads to:

Definition 30 (q—(éech) cohomology group). The g-cohomology group of F with respect to the
covering U is given by

HY(U,F):=zU,F)/BYU,F). (53)
(Analogously HY(U, F) := h4(CO(U, F)).

Remark (A little philosophy). This cohomology theory is very suitable for computations and it does
not require "acyclic” sheaves to be defined. The problem is that it depends on the covering: like in
the definition of the stalk of a sheaf, one should take finer and finer coverings and pass to the limit
HY(X,F) :=lim_, HY(U, F). This cohomology theory coincides with the ”true” sheaf cohomology if
X is a ”descent” topological space (e.g. it is paracompact). In this case H1(X,F) = ]:Iq(X, F) =
lim_, H(U, F).

The Meaning of Cohomology: We now consider cohomology groups in some details:

1. HY(X,F) = Z°%X, F): global sections of F, i.e. H*(X,F) = F(X). Note that H*(X,Ox) = C

for X compact and connected. Also notice that it is independent of the covering.

2. H>O(X, F): in order to see the meaning of the higher cohomology groups one should introduce

(short) exact sequences of sheaves! We first recall the following facts:
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Let ¢ : F — G be a morphism of sheaves. Then:
(i) ker(p) :={U > ker(p)(U) := ker(py : F(U) = G(U))}, a sheaf!
(ii) Im(p) :={U — Im(p)(U) = Im(py : F(U) = G(U))}, not a sheaf!

Im(y) and coker(p) are only presheaves in general: we consider their (sheafified) ”associated” sheaf.

5.2 Exact Sequences of Sheaves

Definition 31 (Exact sequence (of sheaves)). Let ¢ : F — G be a morphism of sheaves on X and let

@z + Fz = Gy be the induced morphism on the stalks. Then a sequence of sheaves

FgPu (54)

is called ezact if for each = € X, the sequence Fy —% G, N H, is exact, i.e. if Im(ay) = ker(B,).

In particular, we say that o : F — G is injective or a monomorphism if 0 — F —— G is exact
(ker(a;) = 0 Vo € X). We say that a : F — G is surjective or an epimorphism if F < G — 0 is
exact (Im(a,) = G, Vo € X).

An exact sequence of the form

0 —F —=G—H—0 (55)

is called a short exact sequence.

Lemma 3. Let a : F — G be injective. Then for every U C X ay : F(U) — G(U) is injective. In
particular, then o(X) : F(X) = H(X,F) — G(X) = H*(X,G) is injective, too.

Proof. Welet f € F(U) with ay(f) = 0. We want to show that f = 0. Since o, : F, — G, is injective
for all z € X, every x € U has a neighbourhood V, C U s.t. f|v. = 0, but then by (sheaf) axiom 1
(local identity) f =0 in U. Hence, ay : F(U) — G(U) is injective. O

Warning: If « : F -2 G is surjective, it is not necessarily true that oy : F(U) — G(U) is surjective

forall U C X!

Example 14. Consider X = C* with
exp: Ox — O%, f— exp(2mif). (56)

Let Uy = C* \ R_ and Uy = C*\ R} and prove that it is surjective. Then the positive axes can
be seen as two possible branch cuts in C* but these cannot be crossed locally in U; and Us (they
are simply connected), so the complex logarithm is a single valued well-defined function: We define

Uy 2 Uy + logy € Hom (O¢. (U), Oc+(U)) with f + logy(f) = 5 logy(f). In particular, posing

)
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fi = logy, (gi) for g; € O&.(U), we have expy, (fi) = gi- Then exp is locally surjective, i.e. VU C X
and f € Og.(U), there exists € U and V,, C U such that f|y, admits a preimage with respect to
expy, € Hom (O(Vy), 0*(V;)) : this implies surjectivity at the level of the stalks, indeed if g, € Og. ,
for some x € U;, then we represent g, by g € Og.(V;) with V, C U; but since expy, is surjective then
there exists f € Oc+(V,) such that g = expy, (f). It follows that g, = (expy, (f)), = exp,(fz) which
concludes the verification.

On the other hand consider the function z — f(z) = z € O&.(C*): Then, there is no f € Oc+(C*)

such that z = expc-(f) because loge-«(z) is not single valued!
Lemma 4. If0 - F 3 G LTRR ezact, then 0 — F(U) %% G(U) % H(U) is exact for allU € X.

Proof. We have already proved that 0 — F(U) — G(U) is exact. We need to prove that Im(ay) =
ker(Sy ).

1. Im(ay) € ker(By): Let f € F(U) and let ¢ = ay(f) € Im(ay). Since the sequence 0 —
Fo — G, — H, is exact for all x € X, then each point x has a neighborhood V, C U such

that 5U(9)‘V = 0 by exactness. Then, by sheaf axiom (I) one has that Sy (g) = 0 and hence
g € ker(By).

2. Im(ay) 2 ker(Sy): Suppose g € G(U) such that Si(g) =0, i.e. g € ker(fy). Since for all x € X
ker(f;) = Im(cy), then there is an open cover U = (J; V] and elements f; € F(V}) such that

ay(fi) = g}Vl. Then, in V; NV one has ayny; (fi — f; = 0, hence since «

) = g‘vlnvj _9|Vlmvj
is injective f; = f; for all 4,5 on V; N'V;. Then it follows from sheaf axiom (II) that there exists
f € F(U) with f|v- = f; Vi. Then, since aU(f)|V_ = ay(flv,) = glv;, sheaf axiom (I) implies

that a(f) = g.

O

Remark (Global Sections Functor). Given a (complex) manifold one can define a functor as follows:

(:)(X):Shx — Ab,
(57)
F— F(X)
This functor is left exact/preserves injectivities but it is not right exact: it does not preserve surjec-
tivitites:

0—>F—=>G—>H—=>0r—[0—FX)—GX)—=HX)—7

In general sheaf cohomology quantifies the failure for this functor to be exact: Cech cohomology is a
way to compute sheaf cohomology. The problems with surjectivity come from examples such as those
of exp : O — O*.

We now study this in the framework of Cech cohomology.
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Remark (Induced Morphisms in Cohomology). Let us consider o : F — G. Then we have corre-
sponding morphisms in cohomology: a4 : HY(X, F) — H4(X,G).
g = 0: One simply has o : F(X) = HY(X,F) - G(X) = H(X,G).
g =1: Let {U;} = 0 be a covering |J; U; = X. We consider ay : C1(U, F) — C'(U, G) such that (fi;) —
ay(fij) = (au,ny; (fij))ij € CY(U,G). The map takes cocycles in cocycles and coboundaries in

coboundaries, hence it descends in cohomology: ay + [ay] : HY (U, F) — HY(U,G). As usual,

taking the limit over U one gets o' : HY(X, F) — H'(X,G).
g > 1: Exactly the same way!

Construction: “Connecting Homomorphism”: Suppose we have
0—F-%5¢-5H—0. (58)
Then we can construct a map 6° : HY(X,H) — H*(X, F) as follows:

1. h € H'(X,H): Since B, : G — H, is surjective there exists a covering U = {U;} such that
X = ;Ui and (g;) € C°(U,G) with B(g;) = h|y, for all 4.

2. Then B(g; = hly,nu; — hu,nu; = 0 (so B(dg) = 0) which implies g; € ker f3.

_g’L|UZnU]) _g7‘|Usz]

3. By exactness kery f = Imy o and the previous lemma one has that there exists f;; € F(U; NU;)

such that ay,nu, (fij) = g5 — gilvinu;-

4. On U; NU; N Uy, one has ay,nu,nu, (fij — fir + fik) = 95 — 9i — 9k + 9i + gx — gj = 0. Then, by

injectivity of a we have fi; — fix + fjklv.nv,nu, = 0 and hence (fij)ijer € ZY U, F).
5. We can then define h +— §h € H*(X,F) where 6h is represented by (f;;) constructed as above.

All higher 60 : HY(X,H) — H*"1(X,F) can be constructed analogously!

CO(U,G) 3 (9:) — s he HY(U,H)
Ls
HI(U,I) > (fzj) — a(fij) c Cl(U, Q)

Figure 1: Summary of the maps defining h — §°h. Note that « is surjective and [ is injective.

The connecting homomorphism enters in the following fundamental result:
Theorem 21 (Snake Lemma). A short exact sequence of sheaves
0—F-5¢-5H—0 (59)

implies a long exact sequence in cohomology via the connecting homomorphism:

DRr. SIMONE NOJA PAGE 27



MATHEMATICAL ASPECTS OF STRING THEORY

0 —— HO(X,F) =% HO(X,G) —— HO(X,H) )

60
[» HY(X, F) =2 HY(X,G) —2 HY(X,H)

51
L HY(X,F) -2 HY(X,G) 2 H (X, H) ...

Proof. We only prove the exactness at H(X,H):

e Im 3y C ker §°: Suppose g € H°(X,G) and h := By(g). In the construction of 6°h we can use
gi = g|u,- But then, since g is a global section, 6°g = 0 which implies a(fi;) = dg = 0 by
construction. But since « is injective, we have f;; = 0. It follows that 6°(8o(g)) = [fi;] = 0.

g — B(g)
This is the picture: L;

0 —2— dg
ker 6° C Im Byp: Suppose 6°. Then §°[h;] = [fij] = 0 and therefore f;; € B1(U,F) and hence
fij = 6%fi = f; — fi. Let us consider B(g;) = h|y, in the construction of §° with 6%, = a(fi;).
Then 6°(g; — a(f;)) = 0. Indeed:

8(gi — a(fi) = alfi) — doa( fi) = el fiy) — (alfs) — a(fi)) = a(fij) — a(fi;) =0

and thus g;a(f;) € Z°(U.G). Also: B(gi —a(f)) = B(g:) — B(a(:))) = B(gi) = hly, which finally
B

fi gr——h
implies h € Im(fy). Diagrammatically: L; L;
f——1y

6 First Applications of Cohomology

In this section, we study some examples.

6.1 Exponential Exact Sequence

exp

0 ZX L OX O} — 1

Let us consider the long exact cohomology sequence:

0 —— HY(X,Z) —— H°(X,0x) —— HY(X,0%) —— HYX,Z) —— HYX,0x) — ...
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Note:

1. H(X,Zx) = Hsiing(X, Z). (This is true also more in general...). This means that the part

“Zx” takes care about the topology of X!
2. If X is compact, then H'(Z) — H'(Ox) is injective, so that one has two exact sequences: First:
0— H%Zyx) - H(Ox) — H°(O%) =0
If X is also connected, then 0 - Z — C — C* = C/Z — 0. Second:

0— HY(Zx) = H'(Ox) —» H'(O%) = Pic(X) > H2(Zx) — ...

~
interesting part

Definition 32 (First Chern Class). The first Chern class of a holomorphic line bundle £ € Pic(X)
is the image in H?*(Zx) of £ via the boundary map, i.e. C1(£) := 6'([g;;]) € H*(Zx) where [g;;] €
H(Ox) = Pic(X).

This is the most important characteristic class of a holomorphic line bundle.

Example 15 (P" and Exponential Exact Sequence). Remember that

) Z 1=2n
H'(P",Zpn) =
0 else

. Now
1.0-Z—-C—>C*—=0,
2. 0— HYP",Z)=0— HYP", Ox) =0 — Pic(P") LK H?*(P",Z)~Z — 0.
It follows that
deg : Pic(P") = Z
(60)
(OB (k)] — k

Remark (Cohomology of Opn(k)). The previous result suggests that one can study the cohomology
of the line bundles Opn (k) for any n > 0, for all £ € Z. This is achieved by Cech cohomology

computations using the standard covering of P". Let us see a couple of examples over P!:

1. H°(P, 0p1(2)): Recall that Uy = {[xo : 71] | Xo # 0} and we set z := 7o the corresponding

local coordinate on Uy. A generic section of Op1 (2)|U0 will be of the form sy = f(z) ey, where

f : Up — C is a holomorphic function and ey, is a local basis of Op1(2). Similarly, a generic
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section of (’),31(2)|U1 will be s1 = g(w) ey, (with w = 1). In the intersection Uy N Uy = {[zo :

11] | w0 # 0 # 21} one has ey, = 22ey, so that if s; = (so, s1) is a 0-cochain C°({Up, U1 }, Op1(2))

| 1
0= (d5)g; = 51 — 50 . g(w) ey, — f(2) ev, = g(w) ey, — f (a) wler,

[e.9] (e 9] )
S DT S B
1=0 §=0

= <(go = fo) + (91— fy)w+ (g2 — fo)w2) +> g+ fiw!

1>2 §>2

so every coefficient has to vanish separately:
s € HO(Pl,(’)pl(Z)) — s=(a+bz+ cz?,c+bw + aw2)
2 2
x
= s = (a:% (a—i—bm—i—c(xl) ) ,x2 (C—I—bmo+a<0) ))
) dy) X1 x1
> s = axd + brox, + ca?
In other words s € H(Op1(2)) is a homogeneous polynomial of degree 2!

2. H'(P!,Op1(—2)): Left as an exercise. One should find

Tox1

H* (Pl,opl(—Q)):< ! >C.

In general, one can compute the dimensions of the cohomology groups for P™:

KO (P™, Opn (k)) := dim H® (P", Opn (k)) = (k —; n) (61)
for k > 0 and
—k—-1
" (P",Opn)) := dim H" (P", Opn(k)) = ( ) (62)
—k-n-1

for k> —n-—1.
6.2 Euler Exact Sequence

0 Opn Opn(+1)@n+1 — Tpn —— 0

Let us again consider the long exact cohomology sequence:

0 —— H%Opn) 2C —— HY(Opn(+1))n+1 = (Crt)ontl __ HY(Tpn) —— HY(Opn) =0
That means we have

0—C— CD’ 5 HO(Tpn) — 0 = HO(Tpn) = ClrD*~1
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Meaning: “Infinitesimal Automorphisms”: H%(Ty) parameterises the infinitesimal automorphisms of
X, in particular in the case of P"® we have Aut(P") = PSL(n,C) so that H°(X,Tpn) = pgl(n,C)
(where pgl(n, C) is the Lie algebra.)

Going up in the long exact sequence we find H*>!(Tpn) = 0. The remarkable case is given by H'.
Meaning: “infinitesimal Deformations:” H!(T) parameterises the infinitesimal deformations of X. In
particular, in the case of P, we find no deformations. In this case we say that the complex manifold

is rigid.

Remark. One can understand the maps entering in the Euler exact sequence as follows:
1. Opn — Opn(+1)®" T with f +—— (2o f, z1f, ..., 20f)
2. OFIT(4+1) — Thn with (S0, ..., 8n) — Sor—q $kOu,

Exercise: Why is this exact?

6.3 Normal Exact Sequence and Adjunction

Recall the definitions of the pull-back bundle [24] the normal bundle 25] and the canonical bundle [I1]

Definition 33 (First Chern Class of a Complex Manifold). Let X be a complex manifold. Then we
define the (first) Chern class of X to be C1(X) := C1(Kx) where Kx is the canonical bundle of X.
Also C1(\"TX).

Also recall the adjunction formula

Note. 1. We want to study this for dimension 1 hypersurfaces Y in X, this means dimY =
dim X — 1.

2. In particular, we want to study codimension 1 hypersurfaces in P”, these hypersurfaces are called

divisors.

Fact: Hypersurfaces of codimension 1 are always given by the zero locus of a holomorphic global
section of some line bundle (“divisor-line bundle correspondence”).

We recall the following facts for codimension 1 hypersurfaces:

1. f dimY = dim X — 1, then if a € Y there exists (U,z = (z1,...,2,)) such that Y NU = {z €
U | zn(z) = 0}.

2. A local equation for Y is a pair (U, f) with f : U — C holomorphic such that

e YNU={ze€U| f(x) =0},
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e ifge OWU)and g(UNY)=0 = g=hf with h € O%(U).

Lemma 5. (U, z,) is a local equation for Y.

3. If (Ua, fo) and (Ug, f3) are two local equations for Y — X, then f,/fz € O*(U, N Ug). This

allows to introduce a line bundle: £y % X such that given an open covering {Uy }aes of X, one

has Ly < (Ua, fo/ f3)-

Remark. £y does not depend on the choice of local equations for Y: indeed if one has Ly <
(Ua, ha/hg) for local equations hy = 0, then @4 := ho/fa : Uy — C* (same class in H(O*))
and gog := fo/fs = cpa(ha/hﬁ)@gl = @aga@;.

Theorem 22. Let Y — X be a hypersurface and let Ly as above. Then:

o There exists s € H*(X, Ly) such that Y = {x € X | s(z) = 0} (zero locus).

o There exists a covering {Uy} of X with s <+ {sq : Uy — C} such that (Uy, Sa) is a local

equation for'Y .

o If L is a line bundle with s € H°(X, L) which gives a family of local equations for Y, then
L= Ly.

Notation: Ly = Ox (D) in the context of the divisors/line bundle correspondence.
Theorem 23. Let Y < X and let Ly as above. Then we have NY/X = Ey}y.
Proof. We note that in this case Ny, x is a line bundle since codim(Y") = 1.

o From adjunction we have Ky = KX{Y ® Ny, x so that dualising det(7TY) = det(TX’Y) ®/\/’;§/X
gives Ny x = det(TX|,) ® det(T'X)*.

e Let us now choose local charts (Uy, 2o := Za,1,- - -+ Za,n) such that (Uy, za.n) is a local equation

for Y. It follows that an atlas for Y is given by Ay = (Y NUq; 20,1, - -5 Za;n—1)ael-

e The fiber bundles that appear are given as follows:

TY(—){UaﬂY, gaﬁ—gzak k,l=1,. n—l}wrank(TY):n—l,
0zq
TX|, ¢ (UaNY, Gop = =1,...,n¢p ~rank (TY|,) =n
azan

~ rank(Ly) = 1.

ﬁy Ad {U aﬂ 625
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Let us compute the line £ = n (last line) of G,g at a point y € Y N (U, N Up),

82& n 8(haﬁzbeta u) (8ha6 >
’ = ’ = n ha 6n = ha (5n )
9251 Y 21 D25 28.,0(Y) Thap(y)on = hap(y) o
SO
b
Gop = ,,gf"@,:,,,,
0...01 hag

with gog(2) € GLp—1(C), ha(x) € C*. This is of the form G5 < TX‘Y. It follows that det(Ga3|Y) =
det(gap) hap and hence det(TX|,) = det(TY) ® Ly. In addition, from adjunction one sees that
det(TY) ® Ny, x = det(TX|,) and thus it follows that Ly = Ny x. O

Now, consider the normal/canonical bundle sequence; We want to study it for y(=1) « pn_ In

view of the result above one has:
0—TY —TX|, — Ox(D) —0 <+— 0—Ox(—D) —T'X|, —TY —0

Projective Hypersurfaces: We know that Y < Prs given by the zero locus of a global section of a

line bundle on P™. We can thus observe the following;:
1. Pic(P™) = Z with [Opn (k)] — k € Z,

Clzo...zn]y k>0

12

2. H°(Opn(k)) where global sections are contained in the first case.

0 if k <0,

This is enough to identify Ly for Y i> P™ with £y = Opn(k) where k£ > 0. In other words, if
s € HY(O(k)) for k > 0, then we have a hypersurface Y = {s = 0}.

Example 16. Consider Y := {[X : Y : Z] € P? | X?Y + Z3 = 0} and define F := X?Y + Z3 ¢

H%(Op2(3)). Notice this defines a g = 1 curve in P?, actually an elliptic curve/complex torus. This
d—1).

follows from the genus-degree formula (see later) for Y¢ C P" ~ H1(Oy) = ( n

1. global + local: Let us dehomogenise the polynomial in U, = {[X : Y : Z] € P? | Z # 0} = C2.
Considering f,(u,v) := F(%,%,l) where u = %,v = % in C2. Then we have f.(u,v) =
u?v + 1 C ¢,(U,) = C% By the implicit function theorem f;1(0) is a complex manifold of

dimension 1 and (U, f.(u,v) = u?v + 1) is a local equation for Y.

2. local + global: Changing coordinates via the trivialisations one has
1 X\?Y ) 5
¢:cz:¢xo¢z [XYZL ? Z‘f‘l :¢x([XYZXY+Z])
€P3\{[0:0:0:1] }=2P2

(ornie ()
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But then one sees that + + (£)3 = (£)3[(£)%% + 1] and hence f; = (¢u2)f2, gu- = (%) and

Juz = (%)3 are the transition functions for Op2(3) which identify F' as a global section in Opz2(3).

patch local (Uj, f;) ~ global F € H° (Opn(k))

restrict global F' € H? (Opn(k)) ~ local (Uj, f;)
Given the discussion above we have immediately the following:

Corollary. If Y <i> P™ is a hypersurface of codimension 1, then
Ny jpn = Opn(d)|, (63)

where d is the degree of the hypersurface Y < Y.

Proof. Simply Ly = Opn(d) and Ny, x = Ly |, =i * Opn(d) = Opn(d)|y.- O
Corollary (Adjunction). The following holds true:
1. Kpn(= A"Tpn) = Opn(—n —1).
2. For Y — P™ a hypersurface of codimension 1 and degree d, one has the adjunction formula:
Ky = Opn(d —n —1)|,. (64)

Proof. Starting with the first statement, just take det from 0 — T35, — (’)3{"“(—1) — Opn — O
det (O (—1)) = det(Tpn) ®opn det(Opn) = det(T,). Since det(Opn) = Opn and F @0, Opn = F
for all sheaves F of Opn-modules. Also det(Ogi!(—1)) = Opn(—n —1). Tt follows that Kpn =
det(T3.) = Opn(—n — 1).

For the second statement, from the general adjunction formula one has Ky = K X’Y ® Ny/ x. For
X =P" and Y <% P" of dimension n — 1, one has Kx = Opn(—n — 1) and Ly = Opn(d)|, for d the
degree of Y. Hence Ky 2 Opn(—n —1)| ® Opn(d)|y = Opn(d —n — 1)|,.. O

Example 17 (Quintic in P*). Consider

Y3 = {[X] cp?

4 4
ZXEHHXFO,ceC}. (65)

i=1 =0

Then Ky, = Opa(5—4—1) ly3 = Op4(0) |Y3 = Oy,. This means Y3 is a Calabi- Yau 3-fold! Superstrings

in D = 10 compactify on Y3: R0 = R* x Y3 where there is the effective theory and N = 1 SUSY on

R% and Y3 is compact.
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6.4 Ideal Sheaf Sequence and Degree-Genus-Formula

To any complex submanifold Y < X is attached a short exact sequence:

o*

0 jy OX i*Oy — 0

This is the ideal sheaf sequence. Note that this is a sequence of sheaves on X. Indeed, U D X ——

Oy (U) = Oy (i~1(U)). Also, notice the following:

1. X DU — jy(U) :={f : U — C | f holomorphic, f(UNY) = 0}, so fis in Ox(U) and

vanishing along Y < X. This is a sheaf of ideals inside Ox.
2. i,Oy = Ox/jx, alternatively jx := ker(i* : Ox — ,.Oy).

Codimension 1 hypersurface in P™: In this case one has Y — P™:

0 jy —E£5 Opn Oy —— 0

where -F' is the multiplication by the defining equation of ¥ = {F = 0} (F is a homogeneous
polynomial). Important: In this case one has jy = Opn(—d) where d is the degree of F.

Degree-Genus-Formula: One can find a relation between the degree of F' and the genus g of the

associated plane curve C < Pr?.

Definition 34 (Genus of X). We define the (arithmetic) genus of a complex projective manifold of

dimension n as

g:=(=1)"(x(0x) 1) = (=1)" (Z(—l)l dim H'(X, Ox) — 1) : (66)
1=0
Remark. If C is of dimension 1 and projective:

g=—(dim H(C,O¢) — dim H'(C,0x) — 1) = dim H'(Ox) (67)

Setting: C s P2 defined by F =0 with F € H°(P?,0(d)):

0—— Op?(—d) OPQ Z*OC 0
Then this induces a long exact sequence in cohomology:

1. 0 — HY(O(=d)) — H(Op2) - HO(i,0¢) = HY(Og) — HY (O(=d)) —> ...
=0 ~C ~C =

This says that we have 0 — C = c—o.

2. 0 — HY(Op2) — HY(O¢) — H*(Op2(—d)) — H*(Op2) — ...
=0 =0

This says that we have H'(O¢ = H?(Op2(—d)). We conclude that h'(O¢) = h?(Op2(—d)) =

(a221) = (af1)-2) = ;") and hence g(C = P?) = (}1) = 3(d — 1)(d - 2).

|
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Example 18. Consider the following three examples:
1. C:=={F = X2 + X1 X2 = 0} C P? has ¢g(C1) = 0 which implies C; = PL.
2. Cy:={F = X3+ X} + X3 =0} CP? has g(C2) = 1 and hence C; = E, a torus!
3. C3:={F =X+ X{ =0} CP?has g(C3) = 3.

Question: Where are genus 2 curves?

Hyperelliptic Curves: Consider y?> = p(z) where P(z) € C[x], deg(P) = 29+ 1+¢ with ¢ € {0,1} and

distinct roots. This means 3?2 = H?ngHE(x — r;) where the r; are the roots, i.e. P(r;) = 0.

1. Note that y?> = P(x) is an affine plane curve in C2, (z,y) € C2, we call it X.

2. U ={(x,y) € X with x # 0} is an open set for X C C2.

3. Let Q(z) = 2%972P(1): This is a polynomial in z with distinct roots (since P has distinct roots).
4. w? = Q(z) is an affine plane curve in C2, we call it Y.

5.V ={(z,w) € Y with z # 0} is an open set for Y in C?.

C’DX={y*>— P(z) =0} {w? - Q(z) =0} =Y C C?

UoX&Svcy

with gluing via

p:U—V

@) — o) = (5.0

6. The surface X [[Y/@ obtained via this gluing is a compact Riemann surface of genus g and is

called hyperelliptic.

Genus 2: It turns out that all ¢ = 2 compact Riemann surfaces are hyperelliptic, e.g. y> = z(z —
1)(z —2)(z — 3) C C? and gluing. These particular curves exist at every genus g and they can be seen
geometrically as given by a ramified double covering 7 : C 2L P!, The ramification points occur at

the roots of P(z). If P(x) is of odd degree, it is also ramified at p = {oo}.

6.5 Relations in Cohomology: Serre Duality

Serre duality is one of the most fundamental relations between cohomology groups of a certain sheaf
and its dual: this relation is mediated by the canonical sheaf Q% = Kx. This is one of the many

reasons why the canonical sheaf is so important!
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The duality states
H{(X,F)2H" (X, F*@ Kx)*. (68)

Here n = dimc X and F* = homp, (F,Ox) is the dual of F. Note that F = Ox on a curve:
H(Ox) = H(X,Q4)* which gives the genus.

Remark. One has to look at this as a “perfect paring”:
HI(X,F) x H™ (X, F* @ Ky) "25% C
Let us compare this to Poincaré duality: For a compact smooth manifold M it states
Hin(M) x H3g' (M) 2 R
(w,n) — /Mw A,

so Hig (M) = Hi2'(M)*. Note that dim V = dim V* for any vector space.

7 Compact Riemann Surfaces

Compact Riemann Surfaces are compact complex manifolds of dimension 1, hence locally they are
described by a single coordinate function z : U — C for U C C. Their geometry is very special (and

beautiful).

Remark. Obviously, closed strings are modelled by compact Riemann surfaces.

7.1 Setting the Stage

Topology: The topology of compact Riemann surfaces is very easy and fully characterised by a single

invariant, the genus g.

Note that H(C,Z) =

(=

Figure 2: Examples for compact Riemann surfaces for ¢ = 0 (left) and g = 1 (right)
This also gives a very important information:

c: HY(C,05) -5 H2(C,Z) =~ Z

(L] — Ci([L£]) =n
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Line bundles are classified by C; which is a discrete number. In this context, this map is called the
degree of the line bundle:
deg(L) :=Ci(L) e Z (70)

Example 19. deg(Op:(k)) =k € Z.

Remark (Numerical Criterion). One can establish some results regarding the relation between the

cohomology and the degree of a line bundle:
deg(£) <0 = HY(C, L)
Intuitively, deg(L) = (#zeros) — (#poles) of a section!

Theorem 24 (Riemann-Roch). Let C be a compact Riemann surface and let L be a line bundle on
it. Then
ho(C,L) —h'(C,L) =1—g+deg (L) (71)

where h* = dim H".

Note. The theorem establishes a relation between the cohomology groups of a line bundle on a

compact Riemann surface. It is one of the most useful results in complex algebraic geometry!

Corollary. Let K¢ = T}, the canonical bundle on C (i.e. the bundle of holomorphic 1-forms). Then

one has that

deg (K¢) =29 — 2. (72)

Proof. Recall that g = h'(O¢) = h°(K¢) by Serre duality. Then h°(K¢) —h'(K¢) = 1 — g + deg(Ke).
9

Using Serre duality, h!(K¢) = h?(Te @ Kc), but Te @ Ke = Te @ Tex = Oc. It follows that h9(K¢) —

h%(O¢) = g — 1 and hence deg(K¢) = 2g — 2. O

Remark (Dimension of the Moduli Space M,). For a complex manifold X we have seen that H°(Tx)
is related to the automorphisms, that is those maps that preserve a certain (complex) structure.
H(Tx) can be interpreted as a sort of “defect”: It tells how much a certain complex structure can
change (without changing the topology!). More precisely, H'(Tx) gives a very rough representation
of the moduli space of complex structures on X, namely H'(Tx) = Tix)M. Nonetheless this is enough

to compute the dimension!

Dimension of M2 We use Riemann-Roch to compute h!(T¢):

1. Serre duality: h!'(T¢) = h°(KZ) ~ holomorphic quadratic differentials.

2. Riemann-Roch: h0(K$?) — h'(K§?) =229 —2) —g+1=3g— 3.
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3. WHKE) = h(Tf®Kc) = hO(1¢) but deg(T¢) = — deg(K¢) = 2—2g and if g > 2, then 2—2g < 0
which implies h°(T¢) = h' (K$?) = 0

It follows that h!(T¢) = 3g — 3 if g > 2. Some examples:

Consider the Riemann sphere (g = 0). Here h'(Tp1) = h'(Op1(+2)) = 0, no moduli! (The moduli
space is a “point” plus isomorphisms.)
Next, consider tori/elliptic curves (g = 1). Here h!(Tg) = h'(Og) SD- hO(Og) = 1.

To conclude:

Oa 9207

Definition 35 (Hodge Numbers). Let X be a compact complex manifold. Then we call hP4(X) :=
dim H9(X, Q%) the Hodge numbers of X.

Remark. The numbers h?%(X) can be arranged into a “diamond”-shaped figure, the Hodge diamond.

For example, consider dimc X = 2:

h2,2
h2,1 h1,2
h3,0 hl,l h0’2
hl,O hO,l
h0,0

Figure 3: Hodge diamond for dim¢ X = 2.

Note. Not all the h?? are independent! They are related by symmetries:

1. Hodge symmetry: h?4(X) = h?P(X).

2. Serre duality: hP4(X) = h"P"=4(X). Indeed, H1(QR) = H"=9(Q% @ AP Tx) = H"9(Q%P)

by using the pairing.

Hodge diamond and topology: Let us now look at the Hodge diamond of a compact Riemann surface

of genus g¢:
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Rl =Rl (Qh) =1
B0 = Q) = g hOL = h(Oc) = g

KO0 = hO(Oc) = 1

One can observe that the sum of the Hodge numbers on the rows give the Betti numbers b(C) of C,

indeed:
; : . 1, i
b'(C) = dim (Hjg(C) ® C) = dim (H*(C,Z) ® C) = — Z K (C)
2g, 1=1 pt+q=i
In fact, this is a very general and important result:

Theorem 25 (Hodge Theorem). Let X be a compact connected (Kdhler) manifold. Then

H'(X,C)= P HI(X,%) (73)
ptg=i

where H'(X,C) = Hip(X) ® C is the de Rham-cohomology valued in C.

7.2 Moduli Space of Genus 1 Compact Riemann Surfaces

We say that (wi,wsz) such that A = spanz(w;,ws) for linearly independent wy,ws € C over R deter-
mines the complex structure of E = C/A. Recall that A = A(wy, ws) := {nw; + mws | n,m € Z}.

Question: When do pairs (wy,ws) and (w1, w2) determine the same complex structure?
Remark. Without loss of generality we can assume Im(3;2) > 0 and Im(%) > 0.

Lemma 6. We have the following equivalence:
A(wr,we) = AWy, W) <= JA € PSL(2,Z) := SL(2,2)/{£1} : =A

Proof. Let us prove the two implications separately:

“<«=": Suppose w = Aw for A € PSL(2,Z). Then w € A(w) and hence it follows that A(w) C A(w).
Conversely, suppose w = A~', hence A(w) C A(@). It follows that A(@) = A(w).

“ =" Let A(w) = A(w). This means that w € A(w) and w € A(@w). Therefore ® = Aw and w = Ad.

Hence on has

N
S
S
S
—_
o

w=Aw = Adw — AA=1, — =

o™\
S
o
Q
(@]
—_
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Then, from det(AA) = det(A) det(A) = 1 one has (ad — &b)(ad —bc) = 1. Since a, b, ¢,d € Z, this
is only possible if ad — bc = +1. Now consider the following: Wy = cwi + dws, W1 = aw + bws.

Then, defining 7 := %2

_wl

= x + 1y with z,y € R, we calculate:

Wy  cwitdwy e dr+c  (dr+¢) (b7 +a)
wl_awl—i—bwg_b%—kcz_lﬁ—l—a_ |bT + al?

1 ) .
= m {(d(x +iy) + c) (b(:c —iy) + a)}
= w (bd:c2 + dazch + ca + bdy? + i(ad — be)y)

Now using that 0 < Im(7) = y, we have

W ad — be w
O<Im<~2>:Im(2)
w1 |b7‘+a\2 w1
~—~
>0

which implies ad — bc = 1 and hence A € SL(2,Z). Finally, notice that A and —A maps to the
same lattice A and thus one has to identify them. This leads to PSL(2,Z).

O]

Theorem 26. E = C/A(w) has the same complex structure as E if and only if there exists A €
PSL(2,Z) and A € C* such that w = NAw.

Proof. Again, we prove the implications separately:

“ — 7. Assume E = E. This means that there exists a biholomorphic map C/A(w) % C/A(w) that can

be lifted to the universal covering of E and E. Namely:

c—" ¢

C/A(w) —2— C/A(w)
One can choose 0 € C and define h : C — C such that 7 o h(0) = ¢ o w(0). Now, this holds true
locally around the origin and it gives a biholomorphic map U,—q Iy Up:() for neighbourhoods
U,U C C of the origin. By analytic continuation kg ~» h : C — C biholomorphic such that

moh = pom everywhere in C.

On the other hand h € Aut(C) are well-known: They are of the foom h : C — C, z — az +b
with a € C*, b € C. This means that

v
wlbi>az+b>—>aw1+b+/\2 and wgbi>w1—|—A1:A1bi>b+A2

and since one has 7h = ¢ it follows that aw; € As.
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Remark: Note that in general ¢(z + A1) = h(z) + A2 from the theory of universal coverings.
But then, since dz = \; € HY(C/A,, Q(l:/Ai), one has that ¢*As = a1 by changing basis. Hence
@*Aa = adz. On the other hand ¢*A20dh = 9,hdz if h is biholomorphic. Then one gets a
differential equation 0;h = a, so [ Owhdw = [; adw and we obtain h(z) = az+b for b € C such
that h(0) = b. Note that h(0) = b € C is just an overall translation. One might require h(0) = 0,

i.e. 0 is mapped to 0.

Clearly, the same is true for going from @ to w via h: one finds that aw € Ay. It follows that if

E = E, then w = aAw with a € C* and A € PSL(2,2).

“<=": We already showed that w and Aw define the same lattice up to translations. This is just a

change of basis in the lattice. To account for the translation we consider h(z) = z+ b. Similarly

also w and aw define the same lattice. this amounts to consider h(z) = az + b.
O

Remark (Long Story Short). A € PSL(2,Z) is a change of basis of the lattice: As it is natural it
does not change the complex structure. On the other hand one can directly observe that one has the
isomorphisms

Eio[z] =2+ (n.l +mZi) <2y wiz + (nw1 +mwz) = ¢([2]).

Hence it is enough to consider lattices generated by the following pair: A = spanz(1,7) where 7 = g—f

and Im(7) > 0. Important: This allows to restrict to consider the Poincaré Half-Plane:
H:={r € C|Im(r) > 0} (74)
where 7 is the modulus.

Idea of Moduli Space: Take a suitable quotient of H so that each complex structure induced by a

lattice is contained only once:

M1 = H/PSL(2,2)

a b w9y awsy + bwy
with PSL(2,Z) the modular group. First of all, notice that if = ,
c d w1 cwz + dwy
then
w9 aws + bwq 17 +b
T = —— =
w1 cwy +dwy er+d

which is a fractional linear transformation since ad — bc = 1.

Definition 36 (Fundamental Domain). It is z; ~ 2 in H if there exists ¢ € PSL(2,Z) such that

z9 = gz1 (i.e. 22 is in the orbit). A fundamental domain for PSL(2,Z) is an open set D C H which
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does not contain any points of distinct equivalent points and such that D (point set closure) contains
at least one point from each equivalence class.

It follows from this that the orbit of D covers H.
Remark. Finding M,—; is “the same” as finding D for PSL(2,Z) in H.

Lemma 7. Let z € H be arbitrary but fized. Then, there is only a finite number of (c,d) € Z* such
that |cz +d| < 1.

Proof. Let (¢, d) be such that |cz+d| < 1. Then, posing z = z+iy we have |cz+d|? = (cd 4 d)* +cy?
————

>0
and thus c?y? < (ex + d)? + ¢*y? < 1. Since z € H with y > 0 it follows that |c| < % Now, since

¢ € Z there is only a finite number of points with this property. Then, let ¢ be one of such values, i.e.
le| < % Regarding d, it is easy to see that (éx 4 d)? + ¢%y? < 1 is only satisfied for a finite number of
values of d € Z. O

Lemma 8. Let z € H be arbitrary but fired and let PSL(2,Z) act on z. Then there exists only a
finite number of points g - z € H such that for any g € PSL(2,Z) we have Im(g - z) > Im(z).
Proof. For any g € PSL(2,Z) and z € H one has

z_az+b_az+bc§+d_Re( Z)+Z,ad—bc
T 5T rd cetdeztd Y lcz + df?

Im(z)

Im(z)
|cz+d|? "

and since ad — be = 1 it follows that Im(g - z) = Finally, lemma [7| tells that there is only a

finite number of pairs (¢, d) such that |cz + d| < 1. O

Remark. The previous lemma [§| suggests that among the elements of an equivalence class g - z one

can choose an element of mazimal height, i.e. a representative such that |cz +d| > 1 for all (¢, d) € Z2:
[g-2]~2=¢-2 forsome 2 € PSL(2,Z): |c2+d| >1V(c,d) e Z? (75)

Remark. Also notice g : z — g- 2z = z + 1 is a legit modular transformation in PSL(2,Z) (just

choose (§1)). Then, every element in H will be mapped in the strip given by —1 < Re(z) < 1.
1 .
[g~z]~]z\§§forg:2b—>z+nW1thn€Z (76)
(with g-g(2) =2 +2, g7 (2) =2~ 1)
Theorem 27. The fundamental domain for the group PSL(2,Z) is the set
1
D:{ZEH‘\Re(z)]<§, |zy>1}. (77)

In particular, there is a set theoretic isomorphism My—1 = D.
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Proof. First, we show that D = {z € H| |Re(z)| < 3, |cz +d| > 1 V(c,d) € Z?}. We call this set D;.
Clearly D; C D since if z € Dy, then for ¢ =1, d = 0 one has |z| > 1 and hence z € D.

Viceversa, suppose z € D. Then if z = 2 + iy we have |cz +d|? = (cz + d)? + 2y = 2(2® + y*) +
——

>0
2cdx+d?. Since x = Re(z) > —1 we conclude |cz+d|? > ¢?2cdz+d* > 2 —cd+d? > 1if (c,d) # (0,0).

It follows that if z € D then z € Dy, so that D = D;.

Then, by the previous remark one has that D contains at least one point from each equivalence
class under PSL(2,Z). In particular, the only pairs of points which are equivalent under PSL(2,Z)
are the points on the boundary 9D of D which are mapped into another by a reflection about = = 0.

Indeed, say z ~ 2’ and 2’ = g z, then Im(z) = Im(g - z) = =)

= [cztq Which implies ez + d|? = 1. This is

possible for the following choices:

1
c==%1, d=0~ 2+— ——,
z

c=0,d=x1~zr—2+1

Clearly the transformation z — z + 1 maps the points with Re(z) = —% to Re(2’) = 4. Further, if

0

|z| = 1, then z = €% — —e~ . This proves that the only points which are identified in D are points

in 0D which coincides upon reflection about x = 0. O

Figure 4: The gray part is the fundamental domain D of PSL(2,Z). (By Original: Kilom691 Vector:
Alexander Hulpke - Own work based on: ModularGroup-FundamentalDomain-01.png, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=59963451)
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