Motivic geometry of two-loop Feynman integrals

Andrew Harder Lehigh University

Joint with Chuck Doran and Pierre Vanhove

Suppose Γ is a graph, $D\in 2\mathbb{Z}_{\geq 0}$ is space-time dimension.

E_Γ, V_Γ, H_Γ, edges, vertices and half (external) edges
 To each half-edge, we associate a momentum p_h ∈ ℝ^{1,D-1}, satisfying;

$$\sum_{h\in H_{\Gamma}} p_h = 0$$
 (conservation of momentum)

- 3. To each internal edge we associate a mass $m_e \in \mathbb{R}_{\geq 0}.$ Simplifications:
- View masses and momenta as complex numbers.
- No 1-valent vertices.
- For each vertex attach a single half-edge (write p_v instead of p_h).

Suppose Γ is a graph, $D\in 2\mathbb{Z}_{\geq 0}$ is space-time dimension.

- 1. $E_{\Gamma}, V_{\Gamma}, H_{\Gamma}$, edges, vertices and half (external) edges
- 2. To each half-edge, we associate a momentum $p_h \in \mathbb{R}^{1,D-1}$, satisfying;

$$\sum_{h\in H_{\Gamma}} p_h = 0 \qquad (\text{ conservation of momentum })$$

3. To each internal edge we associate a mass $m_e \in \mathbb{R}_{\geq 0}$.

Simplifications:

- View masses and momenta as complex numbers.
- No 1-valent vertices.
- For each vertex attach a single half-edge (write p_v instead of p_h).

Suppose Γ is a graph, $D \in 2\mathbb{Z}_{\geq 0}$ is space-time dimension.

- 1. E_{Γ} , V_{Γ} , H_{Γ} , edges, vertices and half (external) edges
- 2. To each half-edge, we associate a momentum $p_h \in \mathbb{R}^{1,D-1}$, satisfying;

$$\sum_{h\in \mathcal{H}_{\Gamma}}p_{h}=0$$
 (conservation of momentum)

3. To each internal edge we associate a mass $m_e \in \mathbb{R}_{\geq 0}$.

Simplifications:

- View masses and momenta as complex numbers.
- No 1-valent vertices.
- For each vertex attach a single half-edge (write p_v instead of p_h).

Suppose Γ is a graph, $D \in 2\mathbb{Z}_{\geq 0}$ is space-time dimension.

- 1. E_{Γ} , V_{Γ} , H_{Γ} , edges, vertices and half (external) edges
- 2. To each half-edge, we associate a momentum $p_h \in \mathbb{R}^{1,D-1}$, satisfying;

$$\sum_{h\in H_{\Gamma}} p_h = 0 \qquad (\text{ conservation of momentum })$$

3. To each internal edge we associate a mass $m_e \in \mathbb{R}_{\geq 0}$. Simplifications:

View masses and momenta as complex numbers.

- No 1-valent vertices.
- For each vertex attach a single half-edge (write p_v instead of p_h).

Suppose Γ is a graph, $D \in 2\mathbb{Z}_{\geq 0}$ is space-time dimension.

- 1. E_{Γ} , V_{Γ} , H_{Γ} , edges, vertices and half (external) edges
- 2. To each half-edge, we associate a momentum $p_h \in \mathbb{R}^{1,D-1}$, satisfying;

$$\sum_{h\in \mathcal{H}_{\Gamma}} p_h = 0$$
 (conservation of momentum)

3. To each internal edge we associate a mass $m_e \in \mathbb{R}_{\geq 0}$. Simplifications:

- View masses and momenta as complex numbers.
- No 1-valent vertices.
- For each vertex attach a single half-edge (write p_v instead of p_h).

Consider the ring $\mathbb{C}[x_e \mid e \in E_{\Gamma}]$.

U_Γ polynomial

Suppose T is a spanning tree of Γ ,

V_F polynomial

Suppose $T_1 \cup T_2$ is a spanning 2-tree of Γ .

$$x^{T_1 \cup T_2} = \prod_{e \notin T_1 \cup T_2} x_e, \quad \mathbf{V}_{\Gamma} = \sum_{\text{spanning 2-trees}} s_{T_1 \cup T_2} x^{T_1 \cup T_2}$$

Here $s_{T_1 \cup T_2} = \left(\sum_{v \in T_1} p_v\right)^2 = \left(\sum_{v \in T_2} p_v\right)^2$.

Consider the ring $\mathbb{C}[x_e \mid e \in E_{\Gamma}]$.

U_{Γ} polynomial

Suppose T is a spanning tree of Γ ,

$$x^{T} = \prod_{e \notin T} x_{e}, \qquad \mathbf{U}_{\Gamma} = \sum_{\text{spanning trees}} x^{T}.$$

V_Γ polynomial

Suppose $T_1 \cup T_2$ is a spanning 2-tree of Γ .

$$x^{T_1 \cup T_2} = \prod_{e \notin T_1 \cup T_2} x_e, \quad \mathbf{V}_{\Gamma} = \sum_{\text{spanning 2-trees}} s_{T_1 \cup T_2} x^{T_1 \cup T_2}$$

Here $s_{T_1 \cup T_2} = \left(\sum_{v \in T_1} p_v\right)^2 = \left(\sum_{v \in T_2} p_v\right)^2$.

Consider the ring $\mathbb{C}[x_e \mid e \in E_{\Gamma}]$.

U_{Γ} polynomial

Suppose T is a spanning tree of Γ ,

$$x^{T} = \prod_{e \notin T} x_{e}, \qquad \mathbf{U}_{\Gamma} = \sum_{\text{spanning trees}} x^{T}.$$

V_{Γ} polynomial

Suppose $T_1 \cup T_2$ is a spanning 2-tree of Γ .

$$x^{T_1 \cup T_2} = \prod_{e \notin T_1 \cup T_2} x_e, \quad \mathbf{V}_{\Gamma} = \sum_{\text{spanning 2-trees}} s_{T_1 \cup T_2} x^{T_1 \cup T_2}$$

Here $s_{T_1 \cup T_2} = \left(\sum_{v \in T_1} p_v\right)^2 = \left(\sum_{v \in T_2} p_v\right)^2$.

F_{Γ} polynomial

$$\mathbf{F}_{\Gamma} = \mathbf{U}_{\Gamma} \left(\sum_{e} m_{e}^{2} x_{e} \right) + \mathbf{V}_{\Gamma}.$$

 $\deg \boldsymbol{\mathsf{U}}_{\Gamma} = \ell(\Gamma), \qquad \deg \boldsymbol{\mathsf{F}}_{\Gamma} = \ell(\Gamma) + 1$

Example:

$$U_{\Gamma} = x_0 x_1 + x_1 x_2 + x_0 x_2$$

$$V_{\Gamma} = x_0 x_1 x_2$$

$$F_{\Gamma} = U_{\Gamma} (m_0^2 x_0 + m_1^2 x_1 + m_2^2 x_2) + q^2 V_{\Gamma}$$

F_{Γ} polynomial

$$\mathbf{F}_{\Gamma} = \mathbf{U}_{\Gamma} \left(\sum_{e} m_{e}^{2} x_{e} \right) + \mathbf{V}_{\Gamma}.$$

 $\label{eq:U} \text{deg}\, \boldsymbol{U}_{\Gamma} = \ell(\Gamma), \qquad \text{deg}\, \boldsymbol{F}_{\Gamma} = \ell(\Gamma) + 1$

Example:

$$U_{\Gamma} = x_0 x_1 + x_1 x_2 + x_0 x_2$$

$$V_{\Gamma} = x_0 x_1 x_2$$

$$F_{\Gamma} = U_{\Gamma} (m_0^2 x_0 + m_1^2 x_1 + m_2^2 x_2) + q^2 V_{\Gamma}$$

F_{Γ} polynomial

$$\mathbf{F}_{\Gamma} = \mathbf{U}_{\Gamma} \left(\sum_{e} m_{e}^{2} x_{e} \right) + \mathbf{V}_{\Gamma}.$$

 $\label{eq:U} \text{deg}\, \boldsymbol{U}_{\Gamma} = \ell(\Gamma), \qquad \text{deg}\, \boldsymbol{F}_{\Gamma} = \ell(\Gamma) + 1$

Example:

F_{Γ} polynomial

$$\mathbf{F}_{\Gamma} = \mathbf{U}_{\Gamma} \left(\sum_{e} m_{e}^{2} x_{e} \right) + \mathbf{V}_{\Gamma}.$$

$$\label{eq:U} \text{deg}\, \boldsymbol{U}_{\Gamma} = \ell(\Gamma), \qquad \text{deg}\, \boldsymbol{F}_{\Gamma} = \ell(\Gamma) + 1$$

Example:

$$I_{\Gamma}(m,s) = \int_{\sigma} \frac{\mathbf{U}_{\Gamma}^{\mathbf{e}_{\Gamma}-D(\ell+1)/2}}{\mathbf{F}_{\Gamma}^{\mathbf{e}_{\Gamma}-D\ell/2}} \Omega_{0}$$

$$\sigma = \{ [x_1 : \cdots : x_{e_{\Gamma}}] \in \mathbb{P}^{e_{\Gamma}-1} \mid x_i \in \mathbb{R}_{\geq 0} \}$$

$$\Omega_0 = \sum_{i=1}^{e_{\Gamma}} (-1)^i x_i \left(dx_1 \wedge \cdots \wedge \widehat{dx_i} \wedge \cdots \wedge dx_{e_{\Gamma}} \right)$$

<ロ><回><一><一><一><一><一><一</td>5/20

Periods and mixed Hodge structures

$$\left[\frac{\mathsf{U}_{\Gamma}^{\mathsf{e}_{\Gamma}-D(\ell+1)/2}}{\mathsf{F}_{\Gamma}^{\mathsf{e}_{\Gamma}-D\ell/2}}\Omega_{\mathsf{0}}\right] \in \mathsf{H}_{\mathsf{dR}}^{\mathsf{e}_{\Gamma}-1}(\mathbb{P}^{\mathsf{e}_{\Gamma}-1}-Z_{\Gamma,D},B_{\Gamma})$$

where
$$Z_{\Gamma,D} = V(\mathbf{F}_{\Gamma}), V(\mathbf{F}_{\Gamma}\mathbf{U}_{\Gamma}), \text{ or } V(\mathbf{U}_{\Gamma}), \text{ and } B_{\Gamma} = V\left(\prod_{i=0}^{e_{\Gamma}} x_i\right)$$

However

$$[\sigma] \notin \mathsf{H}_{\mathsf{e}_{\Gamma}-1}(\mathbb{P}^{\mathsf{e}_{\Gamma}-1} - Z_{\Gamma,D}, B_{\Gamma}) \text{ since } \sigma \cap Z_{\Gamma,D} \neq \emptyset$$

Theorem: (Bloch–Esnault–Kreimer, Brown) After appropriate (toric) blow up $b : \mathbb{P}_{\Gamma} \to \mathbb{P}^{e_{\Gamma}-1}$ and modification of σ , the Feynman integral is a well-defined relative period.

Periods and mixed Hodge structures

$$\left[\frac{\mathsf{U}_{\Gamma}^{\mathsf{e}_{\Gamma}-D(\ell+1)/2}}{\mathsf{F}_{\Gamma}^{\mathsf{e}_{\Gamma}-D\ell/2}}\Omega_{0}\right]\in\mathsf{H}_{\mathsf{dR}}^{\mathsf{e}_{\Gamma}-1}(\mathbb{P}^{\mathsf{e}_{\Gamma}-1}-Z_{\Gamma,D},B_{\Gamma})$$

where
$$Z_{\Gamma,D} = V(\mathbf{F}_{\Gamma}), V(\mathbf{F}_{\Gamma}\mathbf{U}_{\Gamma}), \text{ or } V(\mathbf{U}_{\Gamma}), \text{ and } B_{\Gamma} = V\left(\prod_{i=0}^{e_{\Gamma}} x_i\right)$$

However

$$[\sigma] \notin \mathsf{H}_{\mathsf{e}_{\Gamma}-1}(\mathbb{P}^{\mathsf{e}_{\Gamma}-1} - Z_{\Gamma,D}, B_{\Gamma}) \text{ since } \sigma \cap Z_{\Gamma,D} \neq \emptyset$$

Theorem: (Bloch–Esnault–Kreimer, Brown) After appropriate (toric) blow up $b : \mathbb{P}_{\Gamma} \to \mathbb{P}^{e_{\Gamma}-1}$ and modification of σ , the Feynman integral is a well-defined relative period.

Periods and mixed Hodge structures

$$\left[\frac{\mathsf{U}_{\Gamma}^{\mathsf{e}_{\Gamma}-D(\ell+1)/2}}{\mathsf{F}_{\Gamma}^{\mathsf{e}_{\Gamma}-D\ell/2}}\Omega_{\mathsf{0}}\right]\in\mathsf{H}_{\mathsf{dR}}^{\mathsf{e}_{\Gamma}-1}(\mathbb{P}^{\mathsf{e}_{\Gamma}-1}-Z_{\Gamma,D},B_{\Gamma})$$

where
$$Z_{\Gamma,D} = V(\mathbf{F}_{\Gamma}), V(\mathbf{F}_{\Gamma}\mathbf{U}_{\Gamma}), \text{ or } V(\mathbf{U}_{\Gamma}), \text{ and } B_{\Gamma} = V\left(\prod_{i=0}^{e_{\Gamma}} x_i\right)$$

However

$$[\sigma] \notin \mathsf{H}_{\mathsf{e}_{\Gamma}-1}(\mathbb{P}^{\mathsf{e}_{\Gamma}-1} - Z_{\Gamma,D}, B_{\Gamma}) \text{ since } \sigma \cap Z_{\Gamma,D} \neq \emptyset$$

Theorem: (Bloch–Esnault–Kreimer, Brown) After appropriate (toric) blow up $b : \mathbb{P}_{\Gamma} \to \mathbb{P}^{e_{\Gamma}-1}$ and modification of σ , the Feynman integral is a well-defined relative period.

A D N A B N A B N A B N

The mixed Hodge structure on $H^{e_{\Gamma}-1}(\mathbb{P}_{\Gamma} - Z_{\Gamma}, B_{\Gamma})$ is (up to mixed Tate factors) an iterated extension of mixed Hodge structures of the shape

$$\mathsf{H}^{*}(\mathbb{P}_{\Gamma-\Gamma'}-Z_{\Gamma-\Gamma',D};\mathbb{Q}),\quad\mathsf{H}^{e_{\Gamma/\Gamma'}-1}(\mathbb{P}_{\Gamma/\Gamma'}-Z_{\Gamma/\Gamma'};\mathbb{Q})$$

Goal. We want to study the mixed Hodge structures on the cohomology groups of $Z_{\Gamma,D}$.

(I.e., we do not study Feynman integrals individually, rather we study a space of functions in which they live).

From here on, will study the case where $Z_{\Gamma,D} = V(\mathbf{F}_{\Gamma})$.

The mixed Hodge structure on $H^{e_{\Gamma}-1}(\mathbb{P}_{\Gamma} - Z_{\Gamma}, B_{\Gamma})$ is (up to mixed Tate factors) an iterated extension of mixed Hodge structures of the shape

$$\mathsf{H}^{*}(\mathbb{P}_{\Gamma-\Gamma'}-Z_{\Gamma-\Gamma',D};\mathbb{Q}),\quad\mathsf{H}^{e_{\Gamma/\Gamma'}-1}(\mathbb{P}_{\Gamma/\Gamma'}-Z_{\Gamma/\Gamma'};\mathbb{Q})$$

Goal. We want to study the mixed Hodge structures on the cohomology groups of $Z_{\Gamma,D}$.

(I.e., we do not study Feynman integrals individually, rather we study a space of functions in which they live).

From here on, will study the case where $Z_{\Gamma,D} = V(\mathbf{F}_{\Gamma})$.

The mixed Hodge structure on $H^{e_{\Gamma}-1}(\mathbb{P}_{\Gamma} - Z_{\Gamma}, B_{\Gamma})$ is (up to mixed Tate factors) an iterated extension of mixed Hodge structures of the shape

$$\mathsf{H}^{*}(\mathbb{P}_{\Gamma-\Gamma'}-Z_{\Gamma-\Gamma',D};\mathbb{Q}),\quad\mathsf{H}^{e_{\Gamma/\Gamma'}-1}(\mathbb{P}_{\Gamma/\Gamma'}-Z_{\Gamma/\Gamma'};\mathbb{Q})$$

Goal. We want to study the mixed Hodge structures on the cohomology groups of $Z_{\Gamma,D}$.

(I.e., we do not study Feynman integrals individually, rather we study a space of functions in which they live).

From here on, will study the case where $Z_{\Gamma,D} = V(\mathbf{F}_{\Gamma})$.

- (Belkale–Brosnan) The motives of U_{Γ} are in some sense general.
- (Doryn) Zig-zag family of graphs.
- (Klemm et al.) Sunset graph, and the ice cream graphs.
- (Kerr) Unpublished computations for various two loop graphs.

- (Belkale–Brosnan) The motives of U_{Γ} are in some sense general.
- (Doryn) Zig-zag family of graphs.
- (Klemm et al.) Sunset graph, and the ice cream graphs.
- (Kerr) Unpublished computations for various two loop graphs.

- (Belkale–Brosnan) The motives of \boldsymbol{U}_{Γ} are in some sense general.
- (Doryn) Zig-zag family of graphs.
- (Klemm et al.) Sunset graph, and the ice cream graphs.
- (Kerr) Unpublished computations for various two loop graphs.

- (Belkale–Brosnan) The motives of U_{Γ} are in some sense general.
- (Doryn) Zig-zag family of graphs.
- (Klemm et al.) Sunset graph, and the ice cream graphs.
- (Kerr) Unpublished computations for various two loop graphs.

- (Belkale–Brosnan) The motives of \boldsymbol{U}_{Γ} are in some sense general.
- (Doryn) Zig-zag family of graphs.
- (Klemm et al.) Sunset graph, and the ice cream graphs.
- (Kerr) Unpublished computations for various two loop graphs.

"Proposition". Suppose $\pi : Z \to \mathbb{P}^n$ is a quadric fibration of dimension *n* with generic corank *r* and let \mathcal{D} be a divisor along which the corank of quadrics increases.

- (2) If r = 0 the relative dimension of π is odd, then the cohomology of H^{middle}(Z, Q) is determined by a double cover of B ramified along D.
- (3) If r = 0 the relative dimension of π is odd, then the cohomology of H^{middle}(Z, Q) is determined by the cohomology of a double cover of D.

"Proposition". Suppose $\pi : Z \to \mathbb{P}^n$ is a quadric fibration of dimension *n* with generic corank *r* and let \mathcal{D} be a divisor along which the corank of quadrics increases.

- (2) If r = 0 the relative dimension of π is odd, then the cohomology of H^{middle}(Z, Q) is determined by a double cover of B ramified along D.
- (3) If r = 0 the relative dimension of π is odd, then the cohomology of H^{middle}(Z, Q) is determined by the cohomology of a double cover of D.

"Proposition". Suppose $\pi : Z \to \mathbb{P}^n$ is a quadric fibration of dimension *n* with generic corank *r* and let \mathcal{D} be a divisor along which the corank of quadrics increases.

- (2) If r = 0 the relative dimension of π is odd, then the cohomology of H^{middle}(Z, Q) is determined by a double cover of B ramified along D.
- (3) If r = 0 the relative dimension of π is odd, then the cohomology of H^{middle}(Z, Q) is determined by the cohomology of a double cover of D.

"Proposition". Suppose $\pi : Z \to \mathbb{P}^n$ is a quadric fibration of dimension *n* with generic corank *r* and let \mathcal{D} be a divisor along which the corank of quadrics increases.

- (2) If r = 0 the relative dimension of π is odd, then the cohomology of H^{middle}(Z, Q) is determined by a double cover of B ramified along D.
- (3) If r = 0 the relative dimension of π is odd, then the cohomology of H^{middle}(Z, Q) is determined by the cohomology of a double cover of D.

- Dimension large then *all* fibres are singular. Thus MHS is mixed Tate.
- 2. Dimension small and *a* is even, then MHS is mixed Tate.
- Dimension small and a is odd then five singular fibres; four are nodal, one has rank 1. Thus MHS is a mixed Tate extension of H¹(E; Q).

- 1. Dimension large then *all* fibres are singular. Thus MHS is mixed Tate.
- Dimension small and a is even, then MHS is mixed Tate.
- Dimension small and a is odd then five singular fibres; four are nodal, one has rank 1. Thus MHS is a mixed Tate extension of H¹(E; Q).

 $\Gamma_{a,1,1}$

- 1. Dimension large then *all* fibres are singular. Thus MHS is mixed Tate.
- 2. Dimension small and *a* is even, then MHS is mixed Tate.
- Dimension small and a is odd then five singular fibres; four are nodal, one has rank 1. Thus MHS is a mixed Tate extension of H¹(E; Q).

 $\Gamma_{a,1,1}$

- 1. Dimension large then *all* fibres are singular. Thus MHS is mixed Tate.
- 2. Dimension small and *a* is even, then MHS is mixed Tate.
- Dimension small and *a* is odd then five singular fibres; four are nodal, one has rank 1. Thus MHS is a mixed Tate extension of H¹(E; Q).

The discriminant locus is a union of two distinct sunset Calabi–Yau (n - 1)-folds.

\rightsquigarrow two "motivic" Calabi–Yau (n-2)-folds.

C.f. computations of Duhr–Klemm–Nega–Tancredi.

The discriminant locus is a union of two distinct sunset Calabi–Yau (n - 1)-folds.

\rightsquigarrow two "motivic" Calabi–Yau (n-2)-folds.

C.f. computations of Duhr–Klemm–Nega–Tancredi.

The discriminant locus is a union of two distinct sunset Calabi–Yau (n - 1)-folds.

\rightsquigarrow two "motivic" Calabi–Yau (n-2)-folds.

C.f. computations of Duhr–Klemm–Nega–Tancredi.

The discriminant locus is a union of two distinct sunset Calabi–Yau (n - 1)-folds.

 \rightsquigarrow two "motivic" Calabi–Yau (n-2)-folds.

C.f. computations of Duhr-Klemm-Nega-Tancredi.

 $V(\mathbf{F}_{\Gamma})$ admits a 2-dimensional quadric fibration over \mathbb{P}^{n-1} .

The discriminant locus is a union of two distinct sunset Calabi–Yau (n - 1)-folds.

\rightsquigarrow one "motivic" Calabi-Yau (n-2)-fold.

Remark: The same pattern holds for (n, 1, 1, ..., 1) graphs;

n odd → motivic Calabi–Yau, n even → two motivic Calabi-Yaus

 $V(\mathbf{F}_{\Gamma})$ admits a 2-dimensional quadric fibration over \mathbb{P}^{n-1} .

The discriminant locus is a union of two distinct sunset Calabi–Yau (n - 1)-folds.

\rightsquigarrow one "motivic" Calabi–Yau (n-2)-fold.

Remark: The same pattern holds for (n, 1, 1, ..., 1) graphs;

 $n \text{ odd } \rightsquigarrow \text{ motivic Calabi–Yau},$ $n \text{ even } \rightsquigarrow \text{ two motivic Calabi-Yaus}.$

 $V(\mathbf{F}_{\Gamma})$ admits a 2-dimensional quadric fibration over \mathbb{P}^{n-1} .

The discriminant locus is a union of two distinct sunset Calabi–Yau (n - 1)-folds.

\rightsquigarrow one "motivic" Calabi–Yau (n-2)-fold.

Remark: The same pattern holds for (n, 1, 1, ..., 1) graphs;

 $n \text{ odd } \rightsquigarrow \text{ motivic Calabi–Yau},$ $n \text{ even } \rightsquigarrow \text{ two motivic Calabi-Yaus}.$

 $V(\mathbf{F}_{\Gamma})$ admits a 2-dimensional quadric fibration over \mathbb{P}^{n-1} .

The discriminant locus is a union of two distinct sunset Calabi–Yau (n - 1)-folds.

 \rightsquigarrow one "motivic" Calabi-Yau (n-2)-fold.

Remark: The same pattern holds for (n, 1, 1, ..., 1) graphs;

 $n \text{ odd } \rightsquigarrow \text{ motivic Calabi-Yau},$ $n \text{ even } \rightsquigarrow \text{ two motivic Calabi-Yaus}.$

 $V(\mathbf{F}_{\Gamma})$ admits a conic fibration over \mathbb{P}^{3} .

The discriminant locus is a nodal quartic surface along with a hyperplane.

 \rightsquigarrow motivic K3 surface.

Computations suggest that the generic Picard rank of this K3 surface is 11.

 $V(\mathbf{F}_{\Gamma})$ admits a conic fibration over \mathbb{P}^{3} .

The discriminant locus is a nodal quartic surface along with a hyperplane.

 \rightsquigarrow motivic K3 surface.

Computations suggest that the generic Picard rank of this K3 surface is 11.

 $V(\mathbf{F}_{\Gamma})$ admits a conic fibration over \mathbb{P}^{3} .

The discriminant locus is a nodal quartic surface along with a hyperplane.

 \rightsquigarrow motivic K3 surface.

Computations suggest that the generic Picard rank of this K3 surface is 11.

 $V(\mathbf{F}_{\Gamma})$ admits a conic fibration over \mathbb{P}^{3} .

The discriminant locus is a nodal quartic surface along with a hyperplane.

 \rightsquigarrow motivic K3 surface.

Computations suggest that the generic Picard rank of this K3 surface is 11.

 $V(\mathbf{F}_{\Gamma})$ admits a conic fibration over \mathbb{P}^{3} .

The discriminant locus is a nodal quartic surface along with a hyperplane.

→ motivic K3 surface.

Computations suggest that the generic Picard rank of this K3 surface is 11.

Feynman cubics $(\ell = 2)$

The MHS attached to $\mathbf{U}_{\Gamma_{a,b,c}}$ is mixed Tate ("easy") so we will try to understand the case where $Z_{\Gamma_{a,b,c},D} = V(\mathbf{F}_{\Gamma_{a,b,c}})$.

Physics computations suggest that these motives are simple – that is, they are mixed Tate, or that they come from elliptic curves, at least when one of a, b, or c = 1.

The MHS attached to $\mathbf{U}_{\Gamma_{a,b,c}}$ is mixed Tate ("easy") so we will try to understand the case where $Z_{\Gamma_{a,b,c},D} = V(\mathbf{F}_{\Gamma_{a,b,c}})$.

Physics computations suggest that these motives are simple – that is, they are mixed Tate, or that they come from elliptic curves, at least when one of a, b, or c = 1.

The MHS attached to $\mathbf{U}_{\Gamma_{a,b,c}}$ is mixed Tate ("easy") so we will try to understand the case where $Z_{\Gamma_{a,b,c},D} = V(\mathbf{F}_{\Gamma_{a,b,c}})$.

Physics computations suggest that these motives are simple – that is, they are mixed Tate, or that they come from elliptic curves, at least when one of a, b, or c = 1.

Theorem (Doran-H.-Vanhove). Suppose that b = 0, 1 (that is, $\Gamma_{a,b,c}$ is a planar graph). Then if $H^*(V(\mathbf{F}_{\Gamma_{a,b,c}}); \mathbb{Q})$ is contained in

$\textbf{MHS}^{hyp}_{\mathbb{Q}} = \text{Extension-closed subcategory of } \textbf{MHS}_{\mathbb{Q}} \text{ generated by}$ cohomology of hyperelliptic curves.

If a or $c \leq 2$ then we can replace "hyperelliptic" with "elliptic". If dimension is large enough relative to a and c then cohomology is mixed Tate.

Corollary. The Feynman motive of $\Gamma_{a,1,c}$ is contained in **MHS**^{hyp}.

Theorem (Doran-H.-Vanhove). Suppose that b = 0, 1 (that is, $\Gamma_{a,b,c}$ is a planar graph). Then if $H^*(V(\mathbf{F}_{\Gamma_{a,b,c}}); \mathbb{Q})$ is contained in

 $\textbf{MHS}^{hyp}_{\mathbb{Q}} = \text{Extension-closed subcategory of } \textbf{MHS}_{\mathbb{Q}} \text{ generated by}$ cohomology of hyperelliptic curves.

If a or $c \le 2$ then we can replace "hyperelliptic" with "elliptic". If dimension is large enough relative to a and c then cohomology is mixed Tate.

Corollary. The Feynman motive of $\Gamma_{a,1,c}$ is contained in **MHS**^{hyp}₀.

Proof. Take the pencil of hyperplane sections in X containing L. This induces a quadric fibration over \mathbb{P}^1 . The cohomology of a quadric fibration over \mathbb{P}^1 is either (a) mixed Tate (if relative dimension is even) or hyperelliptic (if relative dimension is odd).

Observation: The cubic equation $F_{\Gamma_{a,0,c}}$ vanishes along a linear subspace of codimension 1.

Proof. Take the pencil of hyperplane sections in X containing L. This induces a quadric fibration over \mathbb{P}^1 . The cohomology of a quadric fibration over \mathbb{P}^1 is either (a) mixed Tate (if relative dimension is even) or hyperelliptic (if relative dimension is odd).

Observation: The cubic equation $\mathbf{F}_{\Gamma_{a,0,c}}$ vanishes along a linear subspace of codimension 1.

Proof. Take the pencil of hyperplane sections in X containing L. This induces a quadric fibration over \mathbb{P}^1 . The cohomology of a quadric fibration over \mathbb{P}^1 is either (a) mixed Tate (if relative dimension is even) or hyperelliptic (if relative dimension is odd).

Observation: The cubic equation $F_{\Gamma_{a,0,c}}$ vanishes along a linear subspace of codimension 1.

Proof. Take the pencil of hyperplane sections in X containing L. This induces a quadric fibration over \mathbb{P}^1 . The cohomology of a quadric fibration over \mathbb{P}^1 is either (a) mixed Tate (if relative dimension is even) or hyperelliptic (if relative dimension is odd).

Observation: The cubic equation $\mathbf{F}_{\Gamma_{a,0,c}}$ vanishes along a linear subspace of codimension 1.

There is a birational map: $\phi: V(\mathbf{F}_{\Gamma_{a,1,c}}) \dashrightarrow X_{a,1,c}$ and open subsets

so that

(1) $X_{a,1,c}$ is a cubic containing a codimension 1 linear subspace,

(2) U, W are complements of hyperplane sections of $V(\mathbf{F}_{\Gamma_{a,1,c}})$ and $X_{a,1,c}$ respectively obtained by removing cubics containing codimension 1 linear subspaces.

There is a birational map: $\phi: V(\mathbf{F}_{\Gamma_{a,1,c}}) \dashrightarrow X_{a,1,c}$ and open subsets

so that

(1) $X_{a,1,c}$ is a cubic containing a codimension 1 linear subspace,

(2) U, W are complements of hyperplane sections of V(F_{Γ_{a,1,c}}) and X_{a,1,c} respectively obtained by removing cubics containing codimension 1 linear subspaces.

There is a birational map: $\phi: V(\mathbf{F}_{\Gamma_{a,1,c}}) \dashrightarrow X_{a,1,c}$ and open subsets

so that

- (1) $X_{a,1,c}$ is a cubic containing a codimension 1 linear subspace,
- (2) U, W are complements of hyperplane sections of $V(\mathbf{F}_{\Gamma_{a,1,c}})$ and $X_{a,1,c}$ respectively obtained by removing cubics containing codimension 1 linear subspaces.

There is a birational map: $\phi: V(\mathbf{F}_{\Gamma_{a,1,c}}) \dashrightarrow X_{a,1,c}$ and open subsets

so that

- (1) $X_{a,1,c}$ is a cubic containing a codimension 1 linear subspace,
- (2) U, W are complements of hyperplane sections of $V(\mathbf{F}_{\Gamma_{a,1,c}})$ and $X_{a,1,c}$ respectively obtained by removing cubics containing codimension 1 linear subspaces.

Motivation coming from Picard-Fuchs operators

Lairez–Vanhove: For many 2-loop Feynman graphs, compute the Picard–Fuchs operators of the family of hypersurfaces

$$\mathbf{F}_{\Gamma}(t) = \mathbf{U}_{\Gamma}\left(\sum_{e \in E_{\Gamma}} m_e^2 x_e\right) + t \mathbf{V}_{\Gamma}, \qquad \omega_{\Gamma} = \frac{\mathbf{U}_{\Gamma}^{e_{\Gamma} - D(\ell+1)/2}}{\mathbf{F}_{\Gamma}^{e_{\Gamma} - D\ell/2}} \Omega$$

I.e., find a differential operator $\mathcal{L}_{\Gamma} \in \mathbb{C}[t,\partial_t]$ so that

$$\mathcal{L}_{\Gamma}[\omega_{\Gamma}] = [0] \in \mathsf{H}_{\mathrm{dR}}^{e_{\Gamma}-1}(\mathbb{P}^{e_{\Gamma}-1} - V(\mathbf{F}_{\Gamma}))$$

Remark: $I_{\Gamma}(t)$ satisfies an inhomogeneous ODE

$$\mathcal{L}_{\Gamma}I_{\Gamma}(t)=f(t)$$

where f(t) is a sum of integrals associated to $\Gamma-e,$ and $\Gamma/\!/e.$

<ロ><回><一><一><一><一><一><一><一</th>18/20

Motivation coming from Picard-Fuchs operators

Lairez–Vanhove: For many 2-loop Feynman graphs, compute the Picard–Fuchs operators of the family of hypersurfaces

$$\mathbf{F}_{\Gamma}(t) = \mathbf{U}_{\Gamma}\left(\sum_{e \in E_{\Gamma}} m_e^2 x_e\right) + t \mathbf{V}_{\Gamma}, \qquad \omega_{\Gamma} = \frac{\mathbf{U}_{\Gamma}^{e_{\Gamma} - D(\ell+1)/2}}{\mathbf{F}_{\Gamma}^{e_{\Gamma} - D\ell/2}} \Omega$$

I.e., find a differential operator $\mathcal{L}_{\Gamma} \in \mathbb{C}[t,\partial_t]$ so that

$$\mathcal{L}_{\Gamma}[\omega_{\Gamma}] = [0] \in \mathsf{H}_{\mathrm{dR}}^{\mathsf{e}_{\Gamma}-1}(\mathbb{P}^{\mathsf{e}_{\Gamma}-1} - V(\mathsf{F}_{\Gamma}))$$

Remark: $I_{\Gamma}(t)$ satisfies an inhomogeneous ODE

$$\mathcal{L}_{\Gamma} I_{\Gamma}(t) = f(t)$$

where f(t) is a sum of integrals associated to $\Gamma-e,$ and $\Gamma/\!/e.$

<ロ><回><一><一><一><一><一><一><一</th>18/20

Motivation coming from Picard-Fuchs operators

Lairez–Vanhove: For many 2-loop Feynman graphs, compute the Picard–Fuchs operators of the family of hypersurfaces

$$\mathbf{F}_{\Gamma}(\mathbf{t}) = \mathbf{U}_{\Gamma}\left(\sum_{e \in \mathcal{E}_{\Gamma}} m_{e}^{2} x_{e}\right) + \mathbf{t} \mathbf{V}_{\Gamma}, \qquad \omega_{\Gamma} = \frac{\mathbf{U}_{\Gamma}^{\mathbf{e}_{\Gamma} - \mathbf{D}(\ell+1)/2}}{\mathbf{F}_{\Gamma}^{\mathbf{e}_{\Gamma} - \mathbf{D}\ell/2}} \Omega$$

I.e., find a differential operator $\mathcal{L}_{\Gamma} \in \mathbb{C}[t,\partial_t]$ so that

$$\mathcal{L}_{\Gamma}[\omega_{\Gamma}] = [0] \in \mathsf{H}_{\mathrm{dR}}^{\mathsf{e}_{\Gamma}-1}(\mathbb{P}^{\mathsf{e}_{\Gamma}-1} - V(\mathsf{F}_{\Gamma}))$$

Remark: $I_{\Gamma}(t)$ satisfies an inhomogeneous ODE

$$\mathcal{L}_{\Gamma}I_{\Gamma}(t)=f(t)$$

where f(t) is a sum of integrals associated to $\Gamma - e$, and $\Gamma / / e$.

Structure theorem for Lairez-Vanhove ODEs

Observation: Frequently, \mathcal{L}_{Γ} factors into components which are

- Picard-Fuchs operators of families of elliptic curves,
- Liouvillian ODEs (= Solvable differential Galois group).

Sol(\mathcal{L}_{Γ}) is a subquotient of $\mathcal{H}_{\Gamma} = \mathbb{C}$ -VMHS attached to $V(\mathbf{F}_{\Gamma}(t))$. Weight filtration on $\mathcal{H}_{\Gamma} \rightsquigarrow$ Factorization of \mathcal{L}_{Γ} Weight graded pieces of $\mathcal{H}_{\Gamma} \rightsquigarrow$ Factors of \mathcal{L}_{Γ} **Theorem (Doran–H.–Vanhove).** If Γ is an (a, 1, c)-type graph then \mathcal{L}_{Γ} factors as:

- Factors with finite monodromy (~ Liovillian).
- Picard–Fuchs operators for families of hyperelliptic curves.

Structure theorem for Lairez-Vanhove ODEs

Observation: Frequently, \mathcal{L}_{Γ} factors into components which are

- Picard-Fuchs operators of families of elliptic curves,
- Liouvillian ODEs (= Solvable differential Galois group).

 $Sol(\mathcal{L}_{\Gamma})$ is a subquotient of $\mathcal{H}_{\Gamma} = \mathbb{C}$ -VMHS attached to $V(\mathbf{F}_{\Gamma}(t))$.

Weight filtration on $\mathcal{H}_{\Gamma} \rightsquigarrow$ Factorization of \mathcal{L}_{Γ}

Weight graded pieces of $\mathcal{H}_{\Gamma} \rightsquigarrow \ \mathsf{Factors}$ of \mathcal{L}_{Γ}

Theorem (Doran–H.–Vanhove). If Γ is an (a, 1, c)-type graph then \mathcal{L}_{Γ} factors as:

- Factors with finite monodromy (~ Liovillian).
- Picard–Fuchs operators for families of hyperelliptic curves.

Structure theorem for Lairez-Vanhove ODEs

Observation: Frequently, \mathcal{L}_{Γ} factors into components which are

- Picard-Fuchs operators of families of elliptic curves,
- Liouvillian ODEs (= Solvable differential Galois group).

Sol(\mathcal{L}_{Γ}) is a subquotient of $\mathcal{H}_{\Gamma} = \mathbb{C}$ -VMHS attached to $V(\mathbf{F}_{\Gamma}(t))$.

Weight filtration on $\mathcal{H}_{\Gamma} \rightsquigarrow$ Factorization of \mathcal{L}_{Γ}

Weight graded pieces of $\mathcal{H}_{\Gamma} \rightsquigarrow \ \mathsf{Factors}$ of \mathcal{L}_{Γ}

Theorem (Doran–H.–Vanhove). If Γ is an (a, 1, c)-type graph then \mathcal{L}_{Γ} factors as:

- Factors with finite monodromy (\sim Liovillian).
- Picard–Fuchs operators for families of hyperelliptic curves.

Remarks

(1) If D = 4 then *only* elliptic curves show up, for all a, c.

- If dimension is high enough, relative to *a*, *c*, the quadric fibrations only contribute mixed Tate components.
- Analyze the remaining cases and conclude that only elliptic curves appear.
- (2) If D = 6 we start to see curves of higher genus appearing. E.g., double box:
 - If $D \leq 2$ then only rational curves appear.
 - If D = 4 then a family of elliptic curves appear (c.f. Bloch).
 If D = 6 then a family of genus 2 curves appear.
- (3) For arbitrary (a, b, c) we expect that the same proof will apply to give a bound on the Hodge structures appearing; e.g., if min{a, b, c} = 2, the Hodge structure on V(F_{Γa,b,c}) comes from surfaces etc..

Remarks

(1) If D = 4 then *only* elliptic curves show up, for all a, c.

- If dimension is high enough, relative to *a*, *c*, the quadric fibrations only contribute mixed Tate components.
- Analyze the remaining cases and conclude that only elliptic curves appear.
- (2) If D = 6 we start to see curves of higher genus appearing. E.g., double box:
 - If $D \leq 2$ then only rational curves appear.
 - If D = 4 then a family of elliptic curves appear (c.f. Bloch).
 - If D = 6 then a family of genus 2 curves appear.

(3) For arbitrary (a, b, c) we expect that the same proof will apply to give a bound on the Hodge structures appearing; e.g., if min{a, b, c} = 2, the Hodge structure on V(F_{Γa,b,c}) comes from surfaces etc..

Remarks

(1) If D = 4 then *only* elliptic curves show up, for all a, c.

- If dimension is high enough, relative to *a*, *c*, the quadric fibrations only contribute mixed Tate components.
- Analyze the remaining cases and conclude that only elliptic curves appear.
- (2) If D = 6 we start to see curves of higher genus appearing. E.g., double box:
 - If $D \leq 2$ then only rational curves appear.
 - If D = 4 then a family of elliptic curves appear (c.f. Bloch).
 - If D = 6 then a family of genus 2 curves appear.
- (3) For arbitrary (a, b, c) we expect that the same proof will apply to give a bound on the Hodge structures appearing; e.g., if min{a, b, c} = 2, the Hodge structure on V(F_{Γa,b,c}) comes from surfaces etc..