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Feynman graphs

Suppose [ is a graph, D € 2Z> is space-time dimension.
1. Er, Vr, Hr, edges, vertices and half (external) edges

2. To each half-edge, we associate a momentum p, € RMP-1
satisfying;

Z ph=0 ( conservation of momentum )
heHr

3. To each internal edge we associate a mass me € R>g.
Simplifications:
e View masses and momenta as complex numbers.
e No 1-valent vertices.

e For each vertex attach a single half-edge (write p, instead of py).
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Symanzik polynomials |

Consider the ring C[x. | e € Er].

Ur polynomial
Suppose T is a spanning tree of T,

xT = H Xe, Ur = Z xT.

e¢T spanning trees

VI polynomial
Suppose T; U T5 is a spanning 2-tree of I.

T1UT> _ T,UT:
x = H Xe, Vr= § : STUT,X 12
e¢ T1UT: spanning 2-trees

Here 5T1UT2 = (ZVGTl pv)2 = (ZVETz pv)2-
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Symanzik polynomials Il

Fr polynomial

Fr=Ur (Z mgxe> + Vr.

degUr = ¢(IN), degFr =4 +1

Example:

Ur = xox1 + x1x2 + Xxox2
Vr = XpX1X2
NS P Untmonto b ) e

Remark: In nearly all examples, V/(Fr) is singular.
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Feynman integrals

yer—D(er1)/2
_ r
Ir(m,s) _/U per—Di/2 o
e

o={[x:xg] EPT| x; € Rso}

€
Qo = Zr(—l)ix; (dx1 Ao Adxi A A dxer)
i=1
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Periods and mixed Hodge structures

er—D(¢+1)/2
[Urr e

Er—D€/2
Fr

€ HE '(P" ! — Zr p, Br)

er
where  Zr p = V(Fr), V(FrUr), or V(Ur), and Br = V (Hx;)
i=0
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Periods and mixed Hodge structures

[Uero(e+1)/2

-
Er—D€/2 QO

€ HiR (P — Zr p, Br)
Fr

er
where  Zr p = V(Fr), V(FrUr), or V(Ur), and Br = V (Hx;)
i=0

However

[U] ¢ Her_l(PEF_l — Zr’D, Br) since o N ZF,D 7é @

Theorem: (Bloch—Esnault—Kreimer, Brown) After appro-
priate (toric) blow up b : Pr — P& ! and modification of o,
the Feynman integral is a well-defined relative period.
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Extensions of mixed Hodge structure

The mixed Hodge structure on H& ~Y(Pr — Zr, Br) is (up to mixed
Tate factors) an iterated extension of mixed Hodge structures of
the shape

H*(Pr_r — Zr 1 p; Q),  HT/™ N (Bryr = Zr s Q)
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Extensions of mixed Hodge structure

The mixed Hodge structure on H& ~Y(Pr — Zr, Br) is (up to mixed
Tate factors) an iterated extension of mixed Hodge structures of
the shape

H*(Pr_r — Zr 1 p; Q),  HT/™ N (Bryr = Zr s Q)

Goal. We want to study the mixed Hodge structures on the
cohomology groups of Zr p.

(l.e., we do not study Feynman integrals individually, rather we
study a space of functions in which they live).

From here on, will study the case where Zr p = V(Fr).
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What is known? (Mathematical literature)

Wheel Sunset family Double box

Other results:

e (Belkale-Brosnan) The motives of Ur are in some sense general.
e (Doryn) Zig-zag family of graphs.

e (Klemm et al.) Sunset graph, and the ice cream graphs.
° (

Kerr) Unpublished computations for various two loop graphs.
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Chains of edges and quadric fibrations
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Lemma (Doran-H.-Vanhove). If [ is a Feynman graph,
(M) >1, and ey,..., e form a chain of edges, then V/(Fr) admits
a quadric fibration over Per—k—1,

“Proposition”. Suppose 7 : Z — P" is a quadric fibration of
dimension n with generic corank r and let D be a divisor along
which the corank of quadrics increases.

(1) If r # 0 then H™ddle(Z Q) is mixed Tate.

(2) If r =0 the relative dimension of 7 is odd, then the
cohomology of H™iddle(Z Q) is determined by a double cover
of B ramified along D.

(3) If r =0 the relative dimension of 7 is odd, then the
cohomology of H™iddle(Z Q) is determiend by the cohomology
of a double cover of D.
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Possible cases:

1.

Dimension large then all fibres are
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Example: ;11 graphs

Zr,, .0 admits a quadric fibration over P*.
Possible cases:

1. Dimension large then all fibres are
singular. Thus MHS is mixed Tate.

2. Dimension small and a is even, then MHS
is mixed Tate.

3. Dimension small and a is odd then five
singular fibres; four are nodal, one has
rank 1. Thus MHS is a mixed Tate
extension of H!(E; Q).
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Example: lce cream with n scoops
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~ two “motivic” Calabi—Yau (n — 2)-folds.
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Example: lce cream with n scoops

V(Fr) admits a conic fibration over
Pt

The discriminant locus is a union of
two distinct sunset Calabi—Yau (n —

1)-folds.

~ two “motivic” Calabi—Yau (n — 2)-folds.

C.f. computations of Duhr-Klemm—Nega—Tancredi.
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Example: Observatory with n lenses

V(Fr) admits a 2-dimensional
quadric fibration over P"~1.

The discriminant locus is a union of
two distinct sunset Calabi-Yau (n —

1)-folds.

~+ one “motivic” Calabi—Yau (n — 2)-fold.

Remark: The same pattern holds for (n,1,1,...,1) graphs;

n odd ~» motivic Calabi—Yau,
n even ~» two motivic Calabi-Yaus.
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Example: The tardigrade

This is a family of cubic fourfolds in P°.

V(Fr) admits a conic fibration over
/,/”"l“‘\\\\ P3.
\V The discriminant locus is a nodal

quartic surface along with a hyper-
plane.

~ motivic K3 surface.
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Example: The tardigrade

This is a family of cubic fourfolds in P°.

V(Fr) admits a conic fibration over
P3.

© The discriminant locus is a nodal

quartic surface along with a hyper-
plane.

~ motivic K3 surface.

Computations suggest that the generic Picard rank of this K3
surface is 11.

Remark. More generally, (n, n, n)-hypersurfaces are related to
Calabi—Yau n-folds.
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Feynman cubics (¢ = 2)

r B - degFr,, =
abec = | | degUr , =

a,b,c

N W

The MHS attached to Ur,, _ is mixed Tate (“easy”) so we will try

to understand the case where Zr_, p = V(Fr,, ).

Physics computations suggest that these motives are simple
— that is, they are mixed Tate, or that they come from elliptic
curves, at least when one of a, b, or c = 1.
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The main result (planar two-loop graphs)

Theorem (Doran-H.-Vanhove). Suppose that b = 0,1 (that is,
[ab,c is a planar graph). Then if H*(V(Fr,, ); Q) is contained in

MHS(ByID = Extension-closed subcategory of MHSg generated by

cohomology of hyperelliptic curves.
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The main result (planar two-loop graphs)

Theorem (Doran-H.-Vanhove). Suppose that b = 0,1 (that is,
[ab,c is a planar graph). Then if H*(V(Fr,, ); Q) is contained in

MHS(ByID = Extension-closed subcategory of MHSg generated by

cohomology of hyperelliptic curves.

If a or ¢ <2 then we can replace "hyperelliptic” with “elliptic”. If
dimension is large enough relative to a and ¢ then cohomology is
mixed Tate.

Corollary. The Feynman motive of ', ¢ is contained in MHS(BYP.
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Proof sketch

Proposition. If a cubic hypersurface X contains a linear subspace
L of codimension 1, then H*(X; Q) € MHSg".
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Proposition. If a cubic hypersurface X contains a linear subspace
L of codimension 1, then H*(X; Q) € MHSg".

Proof. Take the pencil of hyperplane sections in X containing L.
This induces a quadric fibration over P1. The cohomology of a
quadric fibration over P! is either (a) mixed Tate (if relative
dimension is even) or hyperelliptic (if relative dimension is

odd). O
Observation: The cubic equation Fr_  _vanishes along a linear
subspace of codimension 1.

a,0,c

However, the cubic Fr_, . does not vanish along a linear subspace
of codimension 1!
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Proof sketch (continued)

There is a birational map: ¢ : V(Fr,, ) --» X531, and open

subsets
Uy —m W
V(Fra,l,c) 77777 e Xa,l,c
so that
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subsets
Uy —m W
V(Fra,l,c) 77777 e Xa,l,c
so that

(1) Xa1,c is a cubic containing a codimension 1 linear subspace,

(2) U, W are complements of hyperplane sections of V/(Fr,, )
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Proof sketch (continued)

There is a birational map: ¢ : V(Fr,, ) --» X531, and open

subsets
Uy —m W
V(Fra,l,c) 77777 e Xa,l,c
so that

(1) Xa1,c is a cubic containing a codimension 1 linear subspace,

(2) U, W are complements of hyperplane sections of V/(Fr,, )
and X, 1 respectively obtained by removing cubics containing
codimension 1 linear subspaces.

By applying standard arguments relating the cohomology of U
(resp. W) to the cohomology of V/(Fr,, ) (resp. Xa1,) the result
follows. 0J
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Motivation coming from Picard—Fuchs operators

Lairez—Vanhove: For many 2-loop Feynman graphs, compute the
Picard—Fuchs operators of the family of hypersurfaces

Yo D12

Fr()=Ur | > mixe | +tVr,  wr =T —57—0
ecEr FF
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Motivation coming from Picard—Fuchs operators

Lairez—Vanhove: For many 2-loop Feynman graphs, compute the
Picard—Fuchs operators of the family of hypersurfaces

Yo D12

Fr(t) = U|‘ Z mgxe + tV[‘, wr = rFel'_iDmQ

ecEr r
l.e., find a differential operator L € C[t, 0¢] so that
Lrlwr] = [0] € HY (P! — V(Fr))
Remark: Ir(t) satisfies an inhomogeneous ODE
Lrir(e) = £(t)

where f(t) is a sum of integrals associated to [' — e, and I'//e.
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Structure theorem for Lairez—=Vanhove ODEs

Observation: Frequently, £ factors into components which are
e Picard—Fuchs operators of families of elliptic curves,

e Liouvillian ODEs (= Solvable differential Galois group).
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Structure theorem for Lairez—=Vanhove ODEs

Observation: Frequently, £ factors into components which are
e Picard—Fuchs operators of families of elliptic curves,

e Liouvillian ODEs (= Solvable differential Galois group).

Sol(Lr) is a subquotient of #r = C-VMHS attached to V/(Fr(t)).
Weight filtration on H ~» Factorization of Lr

Weight graded pieces of Hr ~~ Factors of Lr

Theorem (Doran—H.—Vanhove). If I is an (a, 1, ¢)-type graph
then Ly factors as:
e Factors with finite monodromy (~ Liovillian).

e Picard—Fuchs operators for families of hyperelliptic curves.
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(1) If D = 4 then only elliptic curves show up, for all a, c.
e |f dimension is high enough, relative to a, ¢, the quadric fibrations
only contribute mixed Tate components.
e Analyze the remaining cases and conclude that only elliptic curves
appear.
If D = 6 we start to see curves of higher genus appearing.
E.g., double box:
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(1)

If D = 4 then only elliptic curves show up, for all a, c.

e |f dimension is high enough, relative to a, ¢, the quadric fibrations
only contribute mixed Tate components.

e Analyze the remaining cases and conclude that only elliptic curves
appear.

If D = 6 we start to see curves of higher genus appearing.
E.g., double box:

e If D < 2 then only rational curves appear.

e If D =4 then a family of elliptic curves appear (c.f. Bloch).

e If D =6 then a family of genus 2 curves appear.

For arbitrary (a, b, c) we expect that the same proof will apply
to give a bound on the Hodge structures appearing; e.g., if
min{a, b, c} = 2, the Hodge structure on V/(Fr_, ) comes
from surfaces etc..
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