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Feynman graphs

Suppose Γ is a graph, D ∈ 2Z≥0 is space-time dimension.

1. EΓ,VΓ,HΓ, edges, vertices and half (external) edges

2. To each half-edge, we associate a momentum ph ∈ R1,D−1,
satisfying;



h∈HΓ

ph = 0 ( conservation of momentum )

3. To each internal edge we associate a mass me ∈ R≥0.

Simplifications:

• View masses and momenta as complex numbers.

• No 1-valent vertices.

• For each vertex attach a single half-edge (write pv instead of ph).
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Symanzik polynomials I

Consider the ring C[xe | e ∈ EΓ].

UΓ polynomial

Suppose T is a spanning tree of Γ,

xT =


e /∈T
xe , UΓ =



spanning trees

xT .

VΓ polynomial

Suppose T1 ∪ T2 is a spanning 2-tree of Γ.

xT1∪T2 =


e /∈T1∪T2

xe , VΓ =


spanning 2-trees

sT1∪T2x
T1∪T2

Here sT1∪T2 =


v∈T1
pv
2

=


v∈T2
pv
2
.
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Symanzik polynomials II

FΓ polynomial

FΓ = UΓ




e

m2
exe


+ VΓ.

degUΓ = ℓ(Γ), degFΓ = ℓ(Γ) + 1

Example:

UΓ = x0x1 + x1x2 + x0x2
VΓ = x0x1x2
FΓ = UΓ(m

2
0x0 +m2

1x1 +m2
2x2) + q2VΓ

Remark: In nearly all examples, V (FΓ) is singular.
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Feynman integrals

IΓ(m, s) =



σ

U
eΓ−D(ℓ+1)/2
Γ

F
eΓ−Dℓ/2
Γ

Ω0

σ = {[x1 : · · · : xeΓ ] ∈ PeΓ−1 | xi ∈ R≥0}

Ω0 =

eΓ

i=1

(−1)ixi


dx1 ∧ · · · ∧ dxi ∧ · · · ∧ dxeΓ
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Periods and mixed Hodge structures


U

eΓ−D(ℓ+1)/2
Γ

F
eΓ−Dℓ/2
Γ

Ω0


∈ HeΓ−1

dR (PeΓ−1 − ZΓ,D ,BΓ)

where ZΓ,D = V (FΓ),V (FΓUΓ), or V (UΓ), and BΓ = V


eΓ

i=0

xi



However

[σ] /∈ HeΓ−1(PeΓ−1 − ZΓ,D ,BΓ) since σ ∩ ZΓ,D ∕= ∅

Theorem: (Bloch–Esnault–Kreimer, Brown) After appro-
priate (toric) blow up b : PΓ → PeΓ−1 and modification of σ,
the Feynman integral is a well-defined relative period.
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Extensions of mixed Hodge structure

The mixed Hodge structure on HeΓ−1(PΓ − ZΓ,BΓ) is (up to mixed
Tate factors) an iterated extension of mixed Hodge structures of
the shape

H∗(PΓ−Γ′ − ZΓ−Γ′,D ;Q), HeΓ//Γ′−1(PΓ//Γ′ − ZΓ//Γ′ ;Q)

Goal. We want to study the mixed Hodge structures on the
cohomology groups of ZΓ,D .

(I.e., we do not study Feynman integrals individually, rather we
study a space of functions in which they live).

From here on, will study the case where ZΓ,D = V (FΓ).
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What is known? (Mathematical literature)

Wheel

...

Sunset family

...

Double box

Other results:

• (Belkale–Brosnan) The motives of UΓ are in some sense general.

• (Doryn) Zig-zag family of graphs.

• (Klemm et al.) Sunset graph, and the ice cream graphs.

• (Kerr) Unpublished computations for various two loop graphs.
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Chains of edges and quadric fibrations

Lemma (Doran-H.-Vanhove). If Γ is a Feynman graph,
ℓ(Γ) > 1, and e1, . . . , ek form a chain of edges, then V (FΓ) admits
a quadric fibration over PeΓ−k−1.

“Proposition”. Suppose π : Z → Pn is a quadric fibration of
dimension n with generic corank r and let D be a divisor along
which the corank of quadrics increases.

(1) If r ∕= 0 then Hmiddle(Z ,Q) is mixed Tate.

(2) If r = 0 the relative dimension of π is odd, then the
cohomology of Hmiddle(Z ,Q) is determined by a double cover
of B ramified along D.

(3) If r = 0 the relative dimension of π is odd, then the
cohomology of Hmiddle(Z ,Q) is determiend by the cohomology
of a double cover of D.
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Example: Γa,1,1 graphs

=

Γa,1,1

ZΓa,1,1,D admits a quadric fibration over P1.

Possible cases:

1. Dimension large then all fibres are
singular. Thus MHS is mixed Tate.

2. Dimension small and a is even, then MHS
is mixed Tate.

3. Dimension small and a is odd then five
singular fibres; four are nodal, one has
rank 1. Thus MHS is a mixed Tate
extension of H1(E ;Q).
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Example: Ice cream with n scoops

...

V (FΓ) admits a conic fibration over
Pn−1.

The discriminant locus is a union of
two distinct sunset Calabi–Yau (n −
1)-folds.

⇝ two “motivic” Calabi–Yau (n − 2)-folds.

C.f. computations of Duhr–Klemm–Nega–Tancredi.
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Example: Observatory with n lenses

...

V (FΓ) admits a 2-dimensional
quadric fibration over Pn−1.

The discriminant locus is a union of
two distinct sunset Calabi–Yau (n −
1)-folds.

⇝ one “motivic” Calabi–Yau (n − 2)-fold.

Remark: The same pattern holds for (n, 1, 1, . . . , 1) graphs;

n odd ⇝ motivic Calabi–Yau,
n even ⇝ two motivic Calabi-Yaus.
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Example: The tardigrade

This is a family of cubic fourfolds in P5.

V (FΓ) admits a conic fibration over
P3.
The discriminant locus is a nodal
quartic surface along with a hyper-
plane.

⇝ motivic K3 surface.

Computations suggest that the generic Picard rank of this K3
surface is 11.

Remark. More generally, (n, n, n)-hypersurfaces are related to
Calabi–Yau n-folds.
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Feynman cubics (ℓ = 2)

Γa,b,c =
degFΓa,b,c = 3
degUΓa,b,c = 2

The MHS attached to UΓa,b,c is mixed Tate (“easy”) so we will try
to understand the case where ZΓa,b,c ,D = V (FΓa,b,c ).

Physics computations suggest that these motives are simple
– that is, they are mixed Tate, or that they come from elliptic
curves, at least when one of a, b, or c = 1.
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The main result (planar two-loop graphs)

Theorem (Doran-H.-Vanhove). Suppose that b = 0, 1 (that is,
Γa,b,c is a planar graph). Then if H∗(V (FΓa,b,c );Q) is contained in

MHShyp
Q = Extension-closed subcategory of MHSQ generated by

cohomology of hyperelliptic curves.

If a or c ≤ 2 then we can replace “hyperelliptic” with “elliptic”. If
dimension is large enough relative to a and c then cohomology is
mixed Tate.

Corollary. The Feynman motive of Γa,1,c is contained in MHShyp
Q .
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Proof sketch

Proposition. If a cubic hypersurface X contains a linear subspace
L of codimension 1, then H∗(X ;Q) ∈ MHShyp

Q .

Proof. Take the pencil of hyperplane sections in X containing L.
This induces a quadric fibration over P1. The cohomology of a
quadric fibration over P1 is either (a) mixed Tate (if relative
dimension is even) or hyperelliptic (if relative dimension is
odd).

Observation: The cubic equation FΓa,0,c vanishes along a linear
subspace of codimension 1.

However, the cubic FΓa,1,c does not vanish along a linear subspace
of codimension 1!

16 / 20



Proof sketch

Proposition. If a cubic hypersurface X contains a linear subspace
L of codimension 1, then H∗(X ;Q) ∈ MHShyp

Q .

Proof. Take the pencil of hyperplane sections in X containing L.
This induces a quadric fibration over P1. The cohomology of a
quadric fibration over P1 is either (a) mixed Tate (if relative
dimension is even) or hyperelliptic (if relative dimension is
odd).

Observation: The cubic equation FΓa,0,c vanishes along a linear
subspace of codimension 1.

However, the cubic FΓa,1,c does not vanish along a linear subspace
of codimension 1!

16 / 20



Proof sketch

Proposition. If a cubic hypersurface X contains a linear subspace
L of codimension 1, then H∗(X ;Q) ∈ MHShyp

Q .

Proof. Take the pencil of hyperplane sections in X containing L.
This induces a quadric fibration over P1. The cohomology of a
quadric fibration over P1 is either (a) mixed Tate (if relative
dimension is even) or hyperelliptic (if relative dimension is
odd).

Observation: The cubic equation FΓa,0,c vanishes along a linear
subspace of codimension 1.

However, the cubic FΓa,1,c does not vanish along a linear subspace
of codimension 1!

16 / 20



Proof sketch

Proposition. If a cubic hypersurface X contains a linear subspace
L of codimension 1, then H∗(X ;Q) ∈ MHShyp

Q .

Proof. Take the pencil of hyperplane sections in X containing L.
This induces a quadric fibration over P1. The cohomology of a
quadric fibration over P1 is either (a) mixed Tate (if relative
dimension is even) or hyperelliptic (if relative dimension is
odd).

Observation: The cubic equation FΓa,0,c vanishes along a linear
subspace of codimension 1.

However, the cubic FΓa,1,c does not vanish along a linear subspace
of codimension 1!

16 / 20



Proof sketch (continued)

There is a birational map: φ : V (FΓa,1,c )  Xa,1,c and open
subsets

U W

V (FΓa,1,c ) Xa,1,c
φ

so that

(1) Xa,1,c is a cubic containing a codimension 1 linear subspace,

(2) U,W are complements of hyperplane sections of V (FΓa,1,c )
and Xa,1,c respectively obtained by removing cubics containing
codimension 1 linear subspaces.

By applying standard arguments relating the cohomology of U
(resp. W ) to the cohomology of V (FΓa,1,c ) (resp. Xa,1,c) the result
follows.
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Motivation coming from Picard–Fuchs operators

Lairez–Vanhove: For many 2-loop Feynman graphs, compute the
Picard–Fuchs operators of the family of hypersurfaces

FΓ(t) = UΓ






e∈EΓ

m2
exe



+ tVΓ, ωΓ =
U

eΓ−D(ℓ+1)/2
Γ

F
eΓ−Dℓ/2
Γ

Ω

I.e., find a differential operator LΓ ∈ C[t, ∂t ] so that

LΓ[ωΓ] = [0] ∈ HeΓ−1
dR (PeΓ−1 − V (FΓ))

Remark: IΓ(t) satisfies an inhomogeneous ODE

LΓIΓ(t) = f (t)

where f (t) is a sum of integrals associated to Γ− e, and Γ//e.
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Structure theorem for Lairez–Vanhove ODEs

Observation: Frequently, LΓ factors into components which are

• Picard–Fuchs operators of families of elliptic curves,

• Liouvillian ODEs (= Solvable differential Galois group).

Sol(LΓ) is a subquotient of HΓ = C-VMHS attached to V (FΓ(t)).

Weight filtration on HΓ ⇝ Factorization of LΓ

Weight graded pieces of HΓ ⇝ Factors of LΓ

Theorem (Doran–H.–Vanhove). If Γ is an (a, 1, c)-type graph
then LΓ factors as:

• Factors with finite monodromy (∼ Liovillian).

• Picard–Fuchs operators for families of hyperelliptic curves.
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Remarks

(1) If D = 4 then only elliptic curves show up, for all a, c .

• If dimension is high enough, relative to a, c , the quadric fibrations
only contribute mixed Tate components.

• Analyze the remaining cases and conclude that only elliptic curves
appear.

(2) If D = 6 we start to see curves of higher genus appearing.
E.g., double box:

• If D ≤ 2 then only rational curves appear.
• If D = 4 then a family of elliptic curves appear (c.f. Bloch).
• If D = 6 then a family of genus 2 curves appear.

(3) For arbitrary (a, b, c) we expect that the same proof will apply
to give a bound on the Hodge structures appearing; e.g., if
min{a, b, c} = 2, the Hodge structure on V (FΓa,b,c ) comes
from surfaces etc..
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