Motivic geometry of two-loop Feynman integrals

Andrew Harder
Lehigh University

Joint with Chuck Doran and Pierre Vanhove

Feynman graphs

Suppose Γ is a graph, $D \in 2 \mathbb{Z}_{\geq 0}$ is space-time dimension. $E_{\Gamma}, V_{\Gamma}, H_{\Gamma}$, edges, vertices and half (external) edges To each half-edge, we associate a momentum $p_{h} \in \mathbb{R}^{1, D-1}$ satisfying;

Simplifications:

Feynman graphs

Suppose Γ is a graph, $D \in 2 \mathbb{Z}_{\geq 0}$ is space-time dimension. 1. $E_{\Gamma}, V_{\Gamma}, H_{\Gamma}$, edges, vertices and half (external) edges

Simplifications:

Feynman graphs

Suppose Γ is a graph, $D \in 2 \mathbb{Z}_{\geq 0}$ is space-time dimension.

1. $E_{\Gamma}, V_{\Gamma}, H_{\Gamma}$, edges, vertices and half (external) edges
2. To each half-edge, we associate a momentum $p_{h} \in \mathbb{R}^{1, D-1}$, satisfying;

$$
\sum_{h \in H_{\ulcorner }} p_{h}=0 \quad \text { (conservation of momentum) }
$$

Simplifications:
View masses and momenta as complex numbers.

- No 1-valent vertices.
- For mach wertex at+ach a single half-edge (write pvinstead of ph)

Feynman graphs

Suppose Γ is a graph, $D \in 2 \mathbb{Z}_{\geq 0}$ is space-time dimension.

1. $E_{\Gamma}, V_{\Gamma}, H_{\Gamma}$, edges, vertices and half (external) edges
2. To each half-edge, we associate a momentum $p_{h} \in \mathbb{R}^{1, D-1}$, satisfying;

$$
\sum_{h \in H_{\Gamma}} p_{h}=0 \quad(\text { conservation of momentum })
$$

3. To each internal edge we associate a mass $m_{e} \in \mathbb{R}_{\geq 0}$.

Simplifications:

View masses and momenta as complex numbers.

- No 1-valent vertices.
- For cach vartex attach a single half-edge (write pv instead of ph)

Feynman graphs

Suppose Γ is a graph, $D \in 2 \mathbb{Z}_{\geq 0}$ is space-time dimension.

1. $E_{\Gamma}, V_{\Gamma}, H_{\Gamma}$, edges, vertices and half (external) edges
2. To each half-edge, we associate a momentum $p_{h} \in \mathbb{R}^{1, D-1}$, satisfying;

$$
\sum_{h \in H_{\Gamma}} p_{h}=0 \quad(\text { conservation of momentum })
$$

3. To each internal edge we associate a mass $m_{e} \in \mathbb{R}_{\geq 0}$.

Simplifications:

- View masses and momenta as complex numbers.
- No 1-valent vertices.
- For each vertex attach a single half-edge (write p_{v} instead of p_{h}).

Symanzik polynomials I

Consider the ring $\mathbb{C}\left[x_{e} \mid e \in E_{\Gamma}\right]$.

U polynomial

Suppose T is a spanning tree of Γ

$\mathrm{V}_{\text {Г polynomial }}$

Supdose $T_{1} \cup T_{2}$ is a spanning 2 -tree of Γ

spanning 2 -trees

Here $s_{T_{1} \cup T_{2}}=\left(\sum_{v \in T_{1}} p_{v}\right)^{2}=\left(\sum_{v \in T_{2}} p_{v}\right)^{2}$

Symanzik polynomials I

Consider the ring $\mathbb{C}\left[x_{e} \mid e \in E_{\Gamma}\right]$.
U_{Γ} polynomial
Suppose T is a spanning tree of Γ,

$$
x^{T}=\prod_{e \notin T} x_{e}, \quad \mathbf{U}_{\Gamma}=\sum_{\text {spanning trees }} x^{T}
$$

V_{Γ} polynomial

Sunnose $T_{1} \cup T_{2}$ is a spanning 2-tree of Γ.
spanning 2 -trees

Symanzik polynomials I

Consider the ring $\mathbb{C}\left[x_{e} \mid e \in E_{\Gamma}\right]$.

U_{Γ} polynomial

Suppose T is a spanning tree of Γ,

$$
x^{T}=\prod_{e \notin T} x_{e}, \quad \mathbf{U}_{\Gamma}=\sum_{\text {spanning trees }} x^{T} .
$$

$\mathbf{V}_{\text {「 }}$ polynomial

Suppose $T_{1} \cup T_{2}$ is a spanning 2-tree of Γ.

$$
x^{T_{1} \cup T_{2}}=\prod_{e \notin T_{1} \cup T_{2}} x_{e}, \quad \mathbf{V}_{\Gamma}=\sum_{\text {spanning 2-trees }} s_{T_{1} \cup T_{2}} x^{T_{1} \cup T_{2}}
$$

Here $s_{T_{1} \cup T_{2}}=\left(\sum_{v \in T_{1}} p_{v}\right)^{2}=\left(\sum_{v \in T_{2}} p_{v}\right)^{2}$.

Symanzik polynomials II

F_{Γ} polynomial

$$
\mathbf{F}_{\Gamma}=\mathbf{U}_{\Gamma}\left(\sum_{e} m_{e}^{2} x_{e}\right)+\mathbf{V}_{\Gamma}
$$

Example:

Symanzik polynomials II

$F_{\ulcorner }$polynomial

$$
\begin{aligned}
\mathbf{F}_{\Gamma} & =\mathbf{U}_{\Gamma}\left(\sum_{e} m_{e}^{2} x_{e}\right)+\mathbf{V}_{\Gamma} . \\
\operatorname{deg} \mathbf{U}_{\Gamma} & =\ell(\Gamma), \quad \operatorname{deg} \mathbf{F}_{\Gamma}=\ell(\Gamma)+1
\end{aligned}
$$

Example:

Remark: In nearly all examples, $V\left(\boldsymbol{F}_{\Gamma}\right)$ is singular.

Symanzik polynomials II

F_{Γ} polynomial

$$
\begin{aligned}
\mathbf{F}_{\Gamma} & =\mathbf{U}_{\Gamma}\left(\sum_{e} m_{e}^{2} x_{e}\right)+\mathbf{V}_{\Gamma} . \\
\operatorname{deg} \mathbf{U}_{\Gamma} & =\ell(\Gamma), \quad \operatorname{deg} \mathbf{F}_{\Gamma}=\ell(\Gamma)+1
\end{aligned}
$$

Example:

$$
\begin{aligned}
& \mathbf{U}_{\Gamma}=x_{0} x_{1}+x_{1} x_{2}+x_{0} x_{2} \\
& \mathbf{V}_{\Gamma}=x_{0} x_{1} x_{2} \\
& \mathbf{F}_{\Gamma}=\mathbf{U}_{\Gamma}\left(m_{0}^{2} x_{0}+m_{1}^{2} x_{1}+m_{2}^{2} x_{2}\right)+q^{2} \mathbf{V}_{\Gamma}
\end{aligned}
$$

Remark: In nearly all examples, $V\left(F_{\Gamma}\right)$ is singular.

Symanzik polynomials II

F_{Γ} polynomial

$$
\begin{aligned}
\mathbf{F}_{\Gamma} & =\mathbf{U}_{\Gamma}\left(\sum_{e} m_{e}^{2} x_{e}\right)+\mathbf{V}_{\Gamma} . \\
\operatorname{deg} \mathbf{U}_{\Gamma} & =\ell(\Gamma), \quad \operatorname{deg} \mathbf{F}_{\Gamma}=\ell(\Gamma)+1
\end{aligned}
$$

Example:

$$
\begin{aligned}
& \mathbf{U}_{\Gamma}=x_{0} x_{1}+x_{1} x_{2}+x_{0} x_{2} \\
& \mathbf{V}_{\Gamma}=x_{0} x_{1} x_{2} \\
& \mathbf{F}_{\Gamma}=\mathbf{U}_{\Gamma}\left(m_{0}^{2} x_{0}+m_{1}^{2} x_{1}+m_{2}^{2} x_{2}\right)+q^{2} \mathbf{V}_{\Gamma}
\end{aligned}
$$

Remark: In nearly all examples, $V\left(\mathbf{F}_{\Gamma}\right)$ is singular.

Feynman integrals

$$
\begin{gathered}
I_{\Gamma}(m, s)=\int_{\sigma} \frac{\mathbf{U}_{\Gamma}^{e_{\Gamma}-D(\ell+1) / 2}}{\mathbf{F}_{\Gamma}^{e_{\Gamma}-D \ell / 2}} \Omega_{0} \\
\sigma=\left\{\left[x_{1}: \cdots: x_{e_{\Gamma}}\right] \in \mathbb{P}^{e_{\Gamma}-1} \mid x_{i} \in \mathbb{R}_{\geq 0}\right\} \\
\Omega_{0}=\sum_{i=1}^{e_{\Gamma}}(-1)^{i} x_{i}\left(d x_{1} \wedge \cdots \wedge \widehat{d x_{i}} \wedge \cdots \wedge d x_{e_{\Gamma}}\right)
\end{gathered}
$$

Periods and mixed Hodge structures

$$
\left[\frac{\mathbf{U}_{\Gamma}^{e_{\Gamma}-D(\ell+1) / 2}}{\mathbf{F}_{\Gamma}^{e_{\Gamma}-D \ell / 2}} \Omega_{0}\right] \in H_{\mathrm{dR}}^{e_{\Gamma}-1}\left(\mathbb{P}^{e_{\Gamma}-1}-Z_{\Gamma, D}, B_{\Gamma}\right)
$$

where $\quad Z_{\Gamma, D}=V\left(\mathbf{F}_{\Gamma}\right), V\left(\mathbf{F}_{\Gamma} \mathbf{U}_{\Gamma}\right)$, or $V\left(\mathbf{U}_{\Gamma}\right)$, and $B_{\Gamma}=V\left(\prod_{i=0}^{e_{\Gamma}} x_{i}\right)$

Theorem: (Bloch-Esnault-Kreimer, Brown) After appropriate (toric) blow up $b: \mathbb{P}_{\Gamma} \rightarrow \mathbb{P}^{e_{\Gamma}-1}$ and modification of σ, the Feynman integral is a well-defined relative period.

Periods and mixed Hodge structures

$$
\left[\frac{\mathbf{U}_{\Gamma}^{e_{\Gamma}-D(\ell+1) / 2}}{\mathbf{F}_{\Gamma}^{e_{\Gamma}-D \ell / 2}} \Omega_{0}\right] \in H_{\mathrm{dR}}^{e_{\Gamma}-1}\left(\mathbb{P}^{e_{\Gamma}-1}-Z_{\Gamma, D}, B_{\Gamma}\right)
$$

where $\quad Z_{\Gamma, D}=V\left(\mathbf{F}_{\Gamma}\right), V\left(\mathbf{F}_{\Gamma} \mathbf{U}_{\Gamma}\right)$, or $V\left(\mathbf{U}_{\Gamma}\right)$, and $B_{\Gamma}=V\left(\prod_{i=0}^{e_{\Gamma}} x_{i}\right)$
However

$$
[\sigma] \notin \mathrm{H}_{e_{\Gamma}-1}\left(\mathbb{P}^{e_{\Gamma}-1}-Z_{\Gamma, D}, B_{\Gamma}\right) \text { since } \sigma \cap Z_{\Gamma, D} \neq \emptyset
$$

Periods and mixed Hodge structures

$$
\left[\frac{\mathbf{U}_{\Gamma}^{e_{\Gamma}-D(\ell+1) / 2}}{\mathbf{F}_{\Gamma}^{e_{\Gamma}-D \ell / 2}} \Omega_{0}\right] \in \mathrm{H}_{\mathrm{dR}}^{e_{\Gamma}-1}\left(\mathbb{P}^{e_{\Gamma}-1}-Z_{\Gamma, D}, B_{\Gamma}\right)
$$

where $\quad Z_{\Gamma, D}=V\left(\mathbf{F}_{\Gamma}\right), V\left(\mathbf{F}_{\Gamma} \mathbf{U}_{\Gamma}\right)$, or $V\left(\mathbf{U}_{\Gamma}\right)$, and $B_{\Gamma}=V\left(\prod_{i=0}^{e_{\Gamma}} x_{i}\right)$
However

$$
[\sigma] \notin H_{e_{\Gamma}-1}\left(\mathbb{P}^{e_{\Gamma}-1}-Z_{\Gamma, D}, B_{\Gamma}\right) \text { since } \sigma \cap Z_{\Gamma, D} \neq \emptyset
$$

Theorem: (Bloch-Esnault-Kreimer, Brown) After appropriate (toric) blow up $b: \mathbb{P}_{\Gamma} \rightarrow \mathbb{P}^{e_{\Gamma}-1}$ and modification of σ, the Feynman integral is a well-defined relative period.

Extensions of mixed Hodge structure

The mixed Hodge structure on $\mathrm{H}^{e r-1}\left(\mathbb{P}_{\Gamma}-Z_{\Gamma}, B_{\Gamma}\right)$ is (up to mixed Tate factors) an iterated extension of mixed Hodge structures of the shape

$$
\mathrm{H}^{*}\left(\mathbb{P}_{\Gamma-\Gamma^{\prime}}-Z_{\Gamma-\Gamma^{\prime}, D} ; \mathbb{Q}\right), \quad \mathrm{H}^{e_{\Gamma / / \Gamma^{\prime}}-1}\left(\mathbb{P}_{\Gamma / / \Gamma^{\prime}}-Z_{\Gamma / / \Gamma^{\prime} ;} ; \mathbb{Q}\right)
$$

Goal. We want to study the mixed Hodge structures on the cohomology groups of $Z_{\Gamma, D}$.
(l.e., we do not study Feynman integrals individually, rather we study a space of functions in which they live)

From here on, will study the case where $Z_{\Gamma, D}=V\left(F_{\Gamma}\right)$

Extensions of mixed Hodge structure

The mixed Hodge structure on $\mathrm{H}^{e r-1}\left(\mathbb{P}_{\Gamma}-Z_{\Gamma}, B_{\Gamma}\right)$ is (up to mixed Tate factors) an iterated extension of mixed Hodge structures of the shape

$$
\mathrm{H}^{*}\left(\mathbb{P}_{\Gamma-\Gamma^{\prime}}-Z_{\Gamma-\Gamma^{\prime}, D} ; \mathbb{Q}\right), \quad \mathrm{H}^{e_{\Gamma / / \Gamma^{\prime}}-1}\left(\mathbb{P}_{\Gamma / / \Gamma^{\prime}}-Z_{\Gamma / / \Gamma^{\prime}} ; \mathbb{Q}\right)
$$

Goal. We want to study the mixed Hodge structures on the cohomology groups of $Z_{\Gamma, D}$.
(l.e., we do not study Feynman integrals individually, rather we study a space of functions in which they live).

From here on, will study the case where $Z_{\Gamma, D}=V\left(F_{\Gamma}\right)$

Extensions of mixed Hodge structure

The mixed Hodge structure on $\mathrm{H}^{e r-1}\left(\mathbb{P}_{\Gamma}-Z_{\Gamma}, B_{\Gamma}\right)$ is (up to mixed Tate factors) an iterated extension of mixed Hodge structures of the shape

$$
\mathrm{H}^{*}\left(\mathbb{P}_{\Gamma-\Gamma^{\prime}}-Z_{\Gamma-\Gamma^{\prime}, D} ; \mathbb{Q}\right), \quad \mathrm{H}^{e_{\Gamma / / \Gamma^{\prime}}-1}\left(\mathbb{P}_{\Gamma / / \Gamma^{\prime}}-Z_{\Gamma / / \Gamma^{\prime} ;} ; \mathbb{Q}\right)
$$

Goal. We want to study the mixed Hodge structures on the cohomology groups of $Z_{\Gamma, D}$.
(l.e., we do not study Feynman integrals individually, rather we study a space of functions in which they live).

From here on, will study the case where $Z_{\Gamma, D}=V\left(\mathbf{F}_{\Gamma}\right)$.

What is known? (Mathematical literature)

Wheel

Sunset family

Double box

Other results:
(Relkale-Rrosnan) The motives of UF are in some sense general
(Doryn) Zig-zag family of graphs.

What is known? (Mathematical literature)

Wheel

Sunset family

Double box

Other results:

- (Belkale-Brosnan) The motives of \mathbf{U}_{Γ} are in some sense general.

What is known? (Mathematical literature)

Wheel

Sunset family

Double box

Other results:

- (Belkale-Brosnan) The motives of \mathbf{U}_{Γ} are in some sense general.
- (Doryn) Zig-zag family of graphs.
- (Kerr) Unpublished computations for various two loop graphs.

What is known? (Mathematical literature)

Wheel

Sunset family

Double box

Other results:

- (Belkale-Brosnan) The motives of \mathbf{U}_{Γ} are in some sense general.
- (Doryn) Zig-zag family of graphs.
- (Klemm et al.) Sunset graph, and the ice cream graphs.

What is known? (Mathematical literature)

Wheel

Sunset family

Double box

Other results:

- (Belkale-Brosnan) The motives of \mathbf{U}_{Γ} are in some sense general.
- (Doryn) Zig-zag family of graphs.
- (Klemm et al.) Sunset graph, and the ice cream graphs.
- (Kerr) Unpublished computations for various two loop graphs.

Chains of edges and quadric fibrations

Lemma (Doran-H.-Vanhove). If Γ is a Feynman graph, $\ell(\Gamma)>1$, and e_{1}, \ldots, e_{k} form a chain of edges, then $V\left(\mathbf{F}_{\Gamma}\right)$ admits a quadric fibration over $\mathbb{P}^{e_{\Gamma}-k-1}$.

Chains of edges and quadric fibrations

Lemma (Doran-H.-Vanhove). If Γ is a Feynman graph, $\ell(\Gamma)>1$, and e_{1}, \ldots, e_{k} form a chain of edges, then $V\left(\mathbf{F}_{\Gamma}\right)$ admits a quadric fibration over $\mathbb{P}^{\operatorname{er}_{r}-k-1}$.
"Proposition". Suppose $\pi: Z \rightarrow \mathbb{P}^{n}$ is a quadric fibration of dimension n with generic corank r and let \mathcal{D} be a divisor along which the corank of quadrics increases.
(1) If $r \neq 0$ then $H^{\text {middle }}(Z, \mathbb{Q})$ is mixed Tate.
of B ramified along \mathcal{D}.
If $r=0$ the relative dimension of π is odd, then the
cohomology of $H^{\text {middle }}(Z, \mathbb{Q})$ is determiend by the cohomology
of a double cover of \mathcal{D}.

Chains of edges and quadric fibrations

Lemma (Doran-H.-Vanhove). If Γ is a Feynman graph, $\ell(\Gamma)>1$, and e_{1}, \ldots, e_{k} form a chain of edges, then $V\left(\mathbf{F}_{\Gamma}\right)$ admits a quadric fibration over $\mathbb{P}^{\operatorname{er}_{r}-k-1}$.
"Proposition". Suppose $\pi: Z \rightarrow \mathbb{P}^{n}$ is a quadric fibration of dimension n with generic corank r and let \mathcal{D} be a divisor along which the corank of quadrics increases.
(1) If $r \neq 0$ then $H^{\text {middle }}(Z, \mathbb{Q})$ is mixed Tate.
(2) If $r=0$ the relative dimension of π is odd, then the cohomology of $\mathrm{H}^{\text {middle }}(Z, \mathbb{Q})$ is determined by a double cover of B ramified along \mathcal{D}.
cohomology of $H^{\text {middle }}(Z, \mathbb{Q})$ is determiend by the cohomology of a double cover of \mathcal{D}.

Chains of edges and quadric fibrations

Lemma (Doran-H.-Vanhove). If Γ is a Feynman graph, $\ell(\Gamma)>1$, and e_{1}, \ldots, e_{k} form a chain of edges, then $V\left(\mathbf{F}_{\Gamma}\right)$ admits a quadric fibration over $\mathbb{P}^{\operatorname{er}_{\Gamma}-k-1}$.
"Proposition". Suppose $\pi: Z \rightarrow \mathbb{P}^{n}$ is a quadric fibration of dimension n with generic corank r and let \mathcal{D} be a divisor along which the corank of quadrics increases.
(1) If $r \neq 0$ then $H^{\text {middle }}(Z, \mathbb{Q})$ is mixed Tate.
(2) If $r=0$ the relative dimension of π is odd, then the cohomology of $\mathrm{H}^{\text {middle }}(Z, \mathbb{Q})$ is determined by a double cover of B ramified along \mathcal{D}.
(3) If $r=0$ the relative dimension of π is odd, then the cohomology of $\mathrm{H}^{\text {middle }}(Z, \mathbb{Q})$ is determiend by the cohomology of a double cover of \mathcal{D}.

Example: $\Gamma_{a, 1,1}$ graphs

$Z_{\Gamma_{a, 1,1, D}}$ admits a quadric fibration over \mathbb{P}^{1}.

Dimension large then all fibres are singular. Thus MHS is mixed Tate. Dimension small and a is even, then MHS is mixed Tate.
$\Gamma_{a, 1,1}$

Example: $\Gamma_{a, 1,1}$ graphs

$Z_{\Gamma_{a, 1,1, D}}$ admits a quadric fibration over \mathbb{P}^{1}.

\|
$\Gamma_{a, 1,1}$

Possible cases:

1. Dimension large then all fibres are singular. Thus MHS is mixed Tate.

Dimension small and a is even, then MHS
is mixed Tate.
Dimension small and a is odd then five
singular fibres; four are nodal, one has
rank 1. Thus MHS is a mixed Tate

Example: $\Gamma_{a, 1,1}$ graphs

$Z_{\Gamma_{a, 1,1}, D}$ admits a quadric fibration over \mathbb{P}^{1}.

Possible cases:

1. Dimension large then all fibres are singular. Thus MHS is mixed Tate.
2. Dimension small and a is even, then MHS is mixed Tate.
II
$\Gamma_{a, 1,1}$
mix
Dimension small and a is odd then five
singular fibres; four are nodal, one has
rank 1. Thus MHS is a mixed Tate

Example: $\Gamma_{a, 1,1}$ graphs

$Z_{\Gamma_{a, 1,1, D}}$ admits a quadric fibration over \mathbb{P}^{1}.

II
$\Gamma_{a, 1,1}$

Possible cases:

1. Dimension large then all fibres are singular. Thus MHS is mixed Tate.
2. Dimension small and a is even, then MHS is mixed Tate.
3. Dimension small and a is odd then five singular fibres; four are nodal, one has rank 1. Thus MHS is a mixed Tate extension of $\mathrm{H}^{1}(E ; \mathbb{Q})$.

Example: Ice cream with n scoops

\rightsquigarrow two "motivic" Calabi-Yau ($n-2$)-folds.

Example: Ice cream with n scoops

$V\left(\mathbf{F}_{\Gamma}\right)$ admits a conic fibration over \mathbb{P}^{n-1}.

The discriminant locus is a union of two distinct sunset Calabi-Yau ($n-$ $1)$-folds.
\rightsquigarrow two "motivic" Calabi-Yau $(n-2)$-folds.
C.f. computations of Duhr-Klemm-Nega-Tancredi.

Example: Ice cream with n scoops

$V\left(\mathbf{F}_{\Gamma}\right)$ admits a conic fibration over \mathbb{P}^{n-1}.

The discriminant locus is a union of two distinct sunset Calabi-Yau ($n-$ $1)$-folds.
\rightsquigarrow two "motivic" Calabi-Yau $(n-2)$-folds.
C.f. computations of Duhr-Klemm-Nega-Tancredi.

Example: Ice cream with n scoops

$V\left(\mathbf{F}_{\Gamma}\right)$ admits a conic fibration over \mathbb{P}^{n-1}.

The discriminant locus is a union of two distinct sunset Calabi-Yau ($n-$ $1)$-folds.
\rightsquigarrow two "motivic" Calabi-Yau $(n-2)$-folds.
C.f. computations of Duhr-Klemm-Nega-Tancredi.

Example: Observatory with n lenses

Example: Observatory with n lenses

$V\left(\mathbf{F}_{\Gamma}\right)$ admits a 2-dimensional
 quadric fibration over \mathbb{P}^{n-1}.

The discriminant locus is a union of two distinct sunset Calabi-Yau ($n-$ $1)$-folds.
\rightsquigarrow one "motivic" Calabi-Yau ($n-2$)-fold.

Remark: The same pattern holds for $(n, 1,1, \ldots, 1)$ graphs;
nodd motivic Calab: Vau,
n even \rightsquigarrow two motivic Calabi-Yaus.

Example: Observatory with n lenses

$V\left(\mathbf{F}_{\Gamma}\right)$ admits a 2-dimensional
 quadric fibration over \mathbb{P}^{n-1}.

The discriminant locus is a union of two distinct sunset Calabi-Yau ($n-$ $1)$-folds.
\rightsquigarrow one "motivic" Calabi-Yau ($n-2$)-fold.

Remark: The same pattern holds for $(n, 1,1, \ldots, 1)$ graphs;
nodd motivic Calab: Vau,
n even \rightsquigarrow two motivic Calabi-Yaus.

Example: Observatory with n lenses

$V\left(\mathbf{F}_{\Gamma}\right)$ admits a 2-dimensional
 quadric fibration over \mathbb{P}^{n-1}.

The discriminant locus is a union of two distinct sunset Calabi-Yau ($n-$ 1)-folds.
\rightsquigarrow one "motivic" Calabi-Yau ($n-2$)-fold.

Remark: The same pattern holds for $(n, 1,1, \ldots, 1)$ graphs; n odd \rightsquigarrow motivic Calabi-Yau, n even \rightsquigarrow two motivic Calabi-Yaus.

Example: The tardigrade

This is a family of cubic fourfolds in \mathbb{P}^{5}.

$V\left(\mathbf{F}_{\Gamma}\right)$ admits a conic fibration over \mathbb{P}^{3}.
The discriminant locus is a nodal quartic surface along with a hyperplane.
\leadsto motivic K3 surface.

Example: The tardigrade

This is a family of cubic fourfolds in \mathbb{P}^{5}.

$V\left(\mathbf{F}_{\Gamma}\right)$ admits a conic fibration over \mathbb{P}^{3}.
The discriminant locus is a nodal quartic surface along with a hyperplane.
\rightsquigarrow motivic K3 surface.

Computations suggest that the generic Picard rank of this K3 surface is 11 .

Example: The tardigrade

This is a family of cubic fourfolds in \mathbb{P}^{5}.

$V\left(\mathbf{F}_{\Gamma}\right)$ admits a conic fibration over \mathbb{P}^{3}.
The discriminant locus is a nodal quartic surface along with a hyperplane.
\rightsquigarrow motivic K3 surface.

Computations suggest that the generic Picard rank of this K3 surface is 11 .

Remark. More generally, (n, n, n)-hypersurfaces are related to Calabi-Yau n-folds.

Example: The tardigrade

This is a family of cubic fourfolds in \mathbb{P}^{5}.

$V\left(F_{\Gamma}\right)$ admits a conic fibration over \mathbb{P}^{3}.
The discriminant locus is a nodal quartic surface along with a hyperplane.
\rightsquigarrow motivic K3 surface.

Computations suggest that the generic Picard rank of this K3 surface is 11 .

Remark. More generally, (n, n, n)-hypersurfaces are related to Calabi-Yau n-folds.

Example: The tardigrade

This is a family of cubic fourfolds in \mathbb{P}^{5}.

$V\left(\mathbf{F}_{\Gamma}\right)$ admits a conic fibration over \mathbb{P}^{3}.
The discriminant locus is a nodal quartic surface along with a hyperplane.
\rightsquigarrow motivic K3 surface.

Computations suggest that the generic Picard rank of this K3 surface is 11 .

Remark. More generally, (n, n, n)-hypersurfaces are related to Calabi-Yau n-folds.

Feynman cubics $(\ell=2)$

The MHS attached to $\mathrm{U}_{\Gamma_{a, b, c}}$ is mixed Tate ("easy") so we will try
to understand the case where $Z_{\Gamma_{a, b, c}, D}=V\left(\boldsymbol{F}_{\Gamma_{a, b, c}}\right)$.

Physics computations suggest that these motives are simple - that is, they are mixed Tate, or that they come from elliptic curves, at least when one of a, b, or $c=1$

Feynman cubics $(\ell=2)$

The MHS attached to $\mathbf{U}_{\Gamma_{a, b, c}}$ is mixed Tate ("easy") so we will try to understand the case where $Z_{\Gamma_{a, b, c}, D}=V\left(\mathbf{F}_{\Gamma_{a, b, c}}\right)$.

Physisc computations sugget that these notives are simple - that is, the are mixed Tate. or that the cone foom elipicic curves, at least when one of a, b, or $c=1$

Feynman cubics $(\ell=2)$

The MHS attached to $\mathbf{U}_{\Gamma_{a, b, c}}$ is mixed Tate ("easy") so we will try to understand the case where $Z_{\Gamma_{a, b, c}, D}=V\left(\mathbf{F}_{\Gamma_{a, b, c}}\right)$.

Physics computations suggest that these motives are simple - that is, they are mixed Tate, or that they come from elliptic curves, at least when one of a, b, or $c=1$.

The main result (planar two-loop graphs)

Theorem (Doran-H.-Vanhove). Suppose that $b=0,1$ (that is, $\Gamma_{a, b, c}$ is a planar graph $)$. Then if $\mathrm{H}^{*}\left(V\left(\mathbf{F}_{\Gamma_{a, b, c}}\right) ; \mathbb{Q}\right)$ is contained in
$\mathbf{M H S}_{\mathbb{Q}}^{\text {hyp }}=$ Extension-closed subcategory of $\mathbf{M H S} \mathbf{Q}_{\mathbb{Q}}$ generated by cohomology of hyperelliptic curves.

If a or $c \leq 2$ then we can replace "hyperelliptic" with "elliptic". If
dimension is large enough relative to a and c then cohomology is
mixed Tate.
Corollary. The Feynman motive of $\Gamma_{a, 1, c}$ is contained in $\mathbf{M H S}_{\mathbb{Q}}^{\text {hyp }}$.

The main result (planar two-loop graphs)

Theorem (Doran-H.-Vanhove). Suppose that $b=0,1$ (that is, $\Gamma_{a, b, c}$ is a planar graph $)$. Then if $\mathrm{H}^{*}\left(V\left(\mathbf{F}_{\Gamma_{a, b, c}}\right) ; \mathbb{Q}\right)$ is contained in $\mathbf{M H S}_{\mathbb{Q}}^{\text {hyp }}=$ Extension-closed subcategory of $\mathbf{M H S} \mathbb{Q}_{\mathbb{Q}}$ generated by cohomology of hyperelliptic curves.

If a or $c \leq 2$ then we can replace "hyperelliptic" with "elliptic". If dimension is large enough relative to a and c then cohomology is mixed Tate.

Corollary. The Feynman motive of $\Gamma_{a, 1, c}$ is contained in $\mathbf{M H S}_{\mathbb{Q}}^{\text {hyp }}$.

Proof sketch

Proposition. If a cubic hypersurface X contains a linear subspace L of codimension 1 , then $\mathrm{H}^{*}(X ; \mathbb{Q}) \in \mathbf{M H S}_{\mathbb{Q}}^{\text {hyp }}$.

Proof. Take the pencil of hyperplane sections in X containing L. This induces a quadric fibration over \mathbb{P}^{1}. The cohomologv of a quadric fibration over \mathbb{P}^{1} is either (a) mixed Tate (if relative dimension is even) or hyperelliptic (if relative dimension is odd)

Observation: The cubic equation $\boldsymbol{F}_{\Gamma_{a, 0, c}}$ vanishes along a linear subspace of codimension 1

Proof sketch

Proposition. If a cubic hypersurface X contains a linear subspace L of codimension 1 , then $\mathrm{H}^{*}(X ; \mathbb{Q}) \in \mathbf{M H S}_{\mathbb{Q}}^{\text {hyp }}$.

Proof. Take the pencil of hyperplane sections in X containing L. This induces a quadric fibration over \mathbb{P}^{1}. The cohomology of a quadric fibration over \mathbb{P}^{1} is either (a) mixed Tate (if relative dimension is even) or hyperelliptic (if relative dimension is odd).

Observation: The cubic equation $\mathbf{F}_{\Gamma_{a, 0, c}}$ vanishes along a linear subspace of codimension 1

However, the cubic $\mathbb{F}_{\Gamma_{a, 1, c}}$ does not vanish along a linear subspace
of codimension 11

Proof sketch

Proposition. If a cubic hypersurface X contains a linear subspace L of codimension 1 , then $\mathrm{H}^{*}(X ; \mathbb{Q}) \in \mathbf{M H S}_{\mathbb{Q}}^{\text {hyp }}$.

Proof. Take the pencil of hyperplane sections in X containing L. This induces a quadric fibration over \mathbb{P}^{1}. The cohomology of a quadric fibration over \mathbb{P}^{1} is either (a) mixed Tate (if relative dimension is even) or hyperelliptic (if relative dimension is odd).

Observation: The cubic equation $\mathbf{F}_{\Gamma_{a, 0, c}}$ vanishes along a linear subspace of codimension 1 .

Proof sketch

Proposition. If a cubic hypersurface X contains a linear subspace L of codimension 1 , then $\mathrm{H}^{*}(X ; \mathbb{Q}) \in \mathbf{M H S}_{\mathbb{Q}}^{\text {hyp }}$.

Proof. Take the pencil of hyperplane sections in X containing L. This induces a quadric fibration over \mathbb{P}^{1}. The cohomology of a quadric fibration over \mathbb{P}^{1} is either (a) mixed Tate (if relative dimension is even) or hyperelliptic (if relative dimension is odd).

Observation: The cubic equation $\mathbf{F}_{\Gamma_{a, 0, c}}$ vanishes along a linear subspace of codimension 1 .

However, the cubic $\mathbf{F}_{\Gamma_{a, 1, c}}$ does not vanish along a linear subspace of codimension 1!

Proof sketch (continued)

There is a birational map: $\phi: V\left(\mathbf{F}_{\Gamma_{a, 1, c}}\right) \rightarrow X_{a, 1, c}$ and open subsets

$$
\underset{V\left(\mathbf{F}_{\Gamma_{a, 1, c}}^{\downarrow}\right)}{\underset{y}{U}} \underset{\substack{\phi \\ \downarrow}}{W}
$$

so that

1) $X_{a, 1, c}$ is a cubic containing a codimension 1 linear subspace, (2) U, W are complements of hyperplane sections of $V\left(F_{\Gamma}\right.$ and $X_{a 1}$, respectively obtained by removing cubics containing codimension 1 linear subspaces.

Proof sketch (continued)

There is a birational map: $\phi: V\left(\mathbf{F}_{\Gamma_{a, 1, c}}\right) \rightarrow X_{a, 1, c}$ and open subsets

$$
\underset{V\left(\mathbf{F}_{\Gamma_{a, 1, c}}^{\downarrow}\right)}{\underset{y}{U}} \underset{\substack{\phi \\ \downarrow}}{W}
$$

so that
(1) $X_{a, 1, c}$ is a cubic containing a codimension 1 linear subspace,
and $X_{a, 1, c}$ respectively obtained by removing cubics containing codimension 1 linear subspaces.

By applying standard arguments relating the cohomology of U (resp. W) to the cohomology of $V\left(F_{\Gamma_{a, 1, c}}\right)$ (resp. $\left.X_{a, 1, c}\right)$ the result follows.

Proof sketch (continued)

There is a birational map: $\phi: V\left(\mathbf{F}_{\Gamma_{a, 1, c}}\right) \rightarrow X_{a, 1, c}$ and open subsets

so that
(1) $X_{a, 1, c}$ is a cubic containing a codimension 1 linear subspace,
(2) U, W are complements of hyperplane sections of $V\left(\mathbf{F}_{\Gamma_{a, 1, c}}\right)$ and $X_{a, 1, c}$ respectively obtained by removing cubics containing codimension 1 linear subspaces.

Proof sketch (continued)

There is a birational map: $\phi: V\left(\mathbf{F}_{\Gamma_{a, 1, c}}\right) \rightarrow X_{a, 1, c}$ and open subsets

so that
(1) $X_{a, 1, c}$ is a cubic containing a codimension 1 linear subspace,
(2) U, W are complements of hyperplane sections of $V\left(\mathbf{F}_{\Gamma_{a, 1, c}}\right)$ and $X_{a, 1, c}$ respectively obtained by removing cubics containing codimension 1 linear subspaces.
By applying standard arguments relating the cohomology of U (resp. W) to the cohomology of $V\left(\mathbf{F}_{\Gamma_{a, 1, c}}\right)$ (resp. $\left.X_{a, 1, c}\right)$ the result follows.

Motivation coming from Picard-Fuchs operators

Lairez-Vanhove: For many 2-loop Feynman graphs, compute the Picard-Fuchs operators of the family of hypersurfaces

$$
\mathbf{F}_{\Gamma}(t)=\mathbf{U}_{\Gamma}\left(\sum_{e \in E_{\Gamma}} m_{e}^{2} x_{e}\right)+t \mathbf{V}_{\Gamma}, \quad \omega_{\Gamma}=\frac{\mathbf{U}_{\Gamma}^{e_{\Gamma}-\mathrm{D}(\ell+1) / 2}}{\mathbf{F}_{\Gamma}^{e_{\Gamma}-\mathrm{D} \ell / 2}} \Omega
$$

Remark: $I_{\Gamma}(t)$ satisfies an inhomogeneous ODE

where $f(t)$ is a sum of integrals associated to $\Gamma-e$, and $\Gamma / / e$.

Motivation coming from Picard-Fuchs operators

Lairez-Vanhove: For many 2-loop Feynman graphs, compute the Picard-Fuchs operators of the family of hypersurfaces

$$
\mathbf{F}_{\Gamma}(t)=\mathbf{U}_{\Gamma}\left(\sum_{e \in E_{\Gamma}} m_{e}^{2} x_{e}\right)+t \mathbf{V}_{\Gamma}, \quad \omega_{\Gamma}=\frac{\mathbf{U}_{\Gamma}^{e_{\Gamma}-\mathrm{D}(\ell+1) / 2}}{\mathbf{F}_{\Gamma}^{e_{\Gamma}-\mathrm{D} \ell / 2}} \Omega
$$

I.e., find a differential operator $\mathcal{L}_{\Gamma} \in \mathbb{C}\left[t, \partial_{t}\right]$ so that

$$
\mathcal{L}_{\Gamma}\left[\omega_{\Gamma}\right]=[0] \in H_{\mathrm{dR}}^{e_{\Gamma}-1}\left(\mathbb{P}^{e_{\Gamma}-1}-V\left(\mathbf{F}_{\Gamma}\right)\right)
$$

Remark: $I_{r}(t)$ satisfies an inhomogeneous ODE

Motivation coming from Picard-Fuchs operators

Lairez-Vanhove: For many 2-loop Feynman graphs, compute the Picard-Fuchs operators of the family of hypersurfaces

$$
\mathbf{F}_{\Gamma}(t)=\mathbf{U}_{\Gamma}\left(\sum_{e \in E_{\Gamma}} m_{e}^{2} x_{e}\right)+t \mathbf{V}_{\Gamma}, \quad \omega_{\Gamma}=\frac{\mathbf{U}_{\Gamma}^{e_{\Gamma}-\mathrm{D}(\ell+1) / 2}}{\mathbf{F}_{\Gamma}^{e_{\Gamma}-\mathrm{D} \ell / 2}} \Omega
$$

I.e., find a differential operator $\mathcal{L}_{\Gamma} \in \mathbb{C}\left[t, \partial_{t}\right]$ so that

$$
\mathcal{L}_{\Gamma}\left[\omega_{\Gamma}\right]=[0] \in \mathrm{H}_{\mathrm{dR}}^{e_{\Gamma}-1}\left(\mathbb{P}^{e_{\Gamma}-1}-V\left(\mathbf{F}_{\Gamma}\right)\right)
$$

Remark: $I_{\Gamma}(t)$ satisfies an inhomogeneous ODE

$$
\mathcal{L}_{\Gamma} I_{\Gamma}(t)=f(t)
$$

where $f(t)$ is a sum of integrals associated to $\Gamma-e$, and $\Gamma / / e$.

Structure theorem for Lairez-Vanhove ODEs

Observation: Frequently, \mathcal{L}_{Γ} factors into components which are

- Picard-Fuchs operators of families of elliptic curves,
- Liouvillian ODEs (= Solvable differential Galois group).

$$
\text { Weight filtration on } \mathcal{H}_{\Gamma} \rightsquigarrow \text { Factorization of } \mathcal{L}_{\Gamma}
$$

$$
\text { Weight graded pieces of } \mathcal{H}_{\Gamma} \rightsquigarrow \text { Factors of } \mathcal{L}_{\Gamma}
$$

Theorem (Doran-H.-Vanhove). If Γ is an ($a, 1, c$)-type graph then \mathcal{L}_{Γ} factors as:

- Factors with finite monodromy (~ Liovillian).
- Picard-Fuchs operators for families of hyperelliptic curves.

Structure theorem for Lairez-Vanhove ODEs

Observation: Frequently, \mathcal{L}_{Γ} factors into components which are

- Picard-Fuchs operators of families of elliptic curves,
- Liouvillian ODEs (= Solvable differential Galois group).
$\operatorname{Sol}\left(\mathcal{L}_{\Gamma}\right)$ is a subquotient of $\mathcal{H}_{\Gamma}=\mathbb{C}-\mathrm{VMHS}$ attached to $V\left(\mathbf{F}_{\Gamma}(t)\right)$.
Weight filtration on $\mathcal{H}_{\Gamma} \rightsquigarrow$ Factorization of \mathcal{L}_{Γ}
Weight graded pieces of $\mathcal{H}_{\Gamma} \rightsquigarrow$ Factors of \mathcal{L}_{Γ}
Theorem (Doran-H.-Vanhove). then \mathcal{L}_{Γ} factors as:
- Factors with finite monodromy
- Picard-Fuchs operators for families of hyperelliptic curves

Structure theorem for Lairez-Vanhove ODEs

Observation: Frequently, \mathcal{L}_{Γ} factors into components which are

- Picard-Fuchs operators of families of elliptic curves,
- Liouvillian ODEs (= Solvable differential Galois group).
$\operatorname{Sol}\left(\mathcal{L}_{\Gamma}\right)$ is a subquotient of $\mathcal{H}_{\Gamma}=\mathbb{C}-\mathrm{VMHS}$ attached to $V\left(\mathbf{F}_{\Gamma}(t)\right)$.
Weight filtration on $\mathcal{H}_{\Gamma} \rightsquigarrow$ Factorization of \mathcal{L}_{Γ}
Weight graded pieces of $\mathcal{H}_{\Gamma} \rightsquigarrow$ Factors of \mathcal{L}_{Γ}
Theorem (Doran-H.-Vanhove). If Γ is an ($a, 1, c$)-type graph then \mathcal{L}_{Γ} factors as:
- Factors with finite monodromy (\sim Liovillian).
- Picard-Fuchs operators for families of hyperelliptic curves.

Remarks

(1) If $D=4$ then only elliptic curves show up, for all a, c.

- If dimension is high enough, relative to a, c, the quadric fibrations only contribute mixed Tate components.
- Analyze the remaining cases and conclude that only elliptic curves appear.
If $D=6$ we start to see curves of higher genus appearing. E.g., double box:
- If $D=4$ then a family of elliptic curves appear (c.f. Bloch) - If $D=6$ then a family of genus 2 curves appear For arbitrary (a, b, c) we expect that the same proof will apply to give a bound on the Hodge structures appearing; e.g., if $\min \{a, b, c\}=2$, the Hodge structure on $V\left(\mathbf{F}_{\Gamma_{a, b, c}}\right)$ comes from surfaces etc

Remarks

(1) If $D=4$ then only elliptic curves show up, for all a, c.

- If dimension is high enough, relative to a, c, the quadric fibrations only contribute mixed Tate components.
- Analyze the remaining cases and conclude that only elliptic curves appear.
(2) If $D=6$ we start to see curves of higher genus appearing. E.g., double box:
- If $D \leq 2$ then only rational curves appear.
- If $D=4$ then a family of elliptic curves appear (c.f. Bloch).
- If $D=6$ then a family of genus 2 curves appear.
to give a bound on the Hodge structures appearing; e.g., if
$\min \{a, b, c\}=2$, the Hodge structure on $V\left(\mathbf{F}_{\Gamma_{a, b, c}}\right)$ comes
from surfaces etc.

Remarks

(1) If $D=4$ then only elliptic curves show up, for all a, c.

- If dimension is high enough, relative to a, c, the quadric fibrations only contribute mixed Tate components.
- Analyze the remaining cases and conclude that only elliptic curves appear.
(2) If $D=6$ we start to see curves of higher genus appearing. E.g., double box:
- If $D \leq 2$ then only rational curves appear.
- If $D=4$ then a family of elliptic curves appear (c.f. Bloch).
- If $D=6$ then a family of genus 2 curves appear.
(3) For arbitrary (a, b, c) we expect that the same proof will apply to give a bound on the Hodge structures appearing; e.g., if $\min \{a, b, c\}=2$, the Hodge structure on $V\left(\mathbf{F}_{\Gamma_{a, b, c}}\right)$ comes from surfaces etc..

