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Finiteness conjecture from String Theory

~ finiteness theorem for self-dual classes arose from physics conjecture
in String theory:

— solve fifth-force-problem using ‘fluxes’ |Hebecker’s talk]

~ consider 12-dimensional F-theory:

solving Einstein’s equations and other equations of motion
12d manifold: S X Y - Calabi-Yau fourfold
4-form: G4€E H* (Y. ) / (hp 0 [ *x(G = Gy linicoharm)
b

— (34 is self-dual integral class

= Conjecture [Douglas ‘03] [Acharya,Douglas "06]:

Number of distinct solutions of string theory with bounds on vacuum
energy, KK scale, compactification volume are finite

— in the above setting: finitely many choices for G4.
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~ Hodge bundle: p: E — M with fibers Hc , = 69 HPY e M

p+q=2d

~ C be Weil operator: Cv =i~ %0 v € H??  (e.g. Hodge star C' = %)
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Theorem [Bakker, TG,Schnell, Tsimerman]: For integer ¢ > 0, the locus of
integral selt-dual classes

Sy = {(a:,v) cE: ve Hz, and C,v = v and Q(v,v) = 6}

is a set definable in the o-minimal structure R, oy
— S, has finitely many connected components
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~ Tameness might be a powerful consistency principle: [TG ‘21]
common property of lower-dimensional theories arising from String theory

Quantum Gravity
String Theory

tame set of effective
theories

models consistent with
Quantum Gravity

= Tameness in Quantum Field Theories (QFTs) [Douglas, TG,Schlechter '22+'23]

— use of many of the recent results on tameness in Hodge theory
— several new conjectures
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= Tameness is finiteness principle: “finiteness of geometric complexity’
intro book [van den Dries]
Recently e.g. 2022 Fields institute program (6 months), future: IAS program

= Avoid wild functions and sets:

— no sets with infinite disconnected components:
integers, lattices... /\ /\ /\

— no complicated functions: f(z) =e " " sin(1/x) \/ \/ WHW U(\/\\/\/

~ Motivation of o-minimal structures in logic:
avoid hard undecidability questions [Tarski] (Godel’s theorems are over integers)

~ Grothendieck’s dream:
develop mathematical framework for geometry

— tame topology [Esquisse d’un programme]
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= structure S: collect subsetsof R", n=1,2, ...

> closed under finite unions V, intersections A, complements —, products
> closed under projections (existential quantifier 3)
> sets defined by all real polynomials included (algebraic sets)

- tame/o-minimal structure S: only subsets of R that arein S are

finite unions of points and intervals
[van den Dries]

sets in o-minimal structure §: tame sets

functions with graph being a tame set: tame functions

— tame manifold, tame bundles... a tame geometry
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= Simplest structure: Ralg (used e.g. in real algebraic geometry)

generated by zero-sets of finitely many real polynomials:

P ( T T ) — 0 complete sets obtained by projection,
e - unions, ...

~ General structure: add more functions f; : R"™ — R to generate sets

Pk(gjlv coey Ly fl(m)a 1145 fn(x)) =0

~ Logic perspective: Rr = <R;—|—, = >,.7:> g — {fl,fz, }

all formulas using these symbols and A, Vv, -, 3, V
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Examples of o-minimal structures

~ Note: There are many known o-minimal structures.

» examples are obtained by stating which functions are allowed
to generate the sets — non-trivial

=~ Some examples:
IRexp i e {GXp} [Wilkie "96]
R.,: F = {restricted analytic functions} [Denef, van den Dries '88]

combine: Ran,exp [van den Dries,Macintyre,Marker "94]

Pfaffian extension: P(R) includes solutions to 9, f = F;(x, f(x))

F’; functions in o-minimal structure R  [Speissegger "97]

structure including I'(x)|,cc) and ((x)|(1,00) [Rolin,Servi,Speissegger "22]
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Examples and Non-Examples

~ Consider function: f:R — R

tame function split R into finite number

of intervals: f is either

/ \ constant, or monotonic

\ - and continuous in
each open interval

< > ' < dh >

— finitely many minima and maxima, tame tail to infinity

=~ Periodic functions f(z +n) = f(x) are never tame (when not constant)

sin(z), z € R /\\//\\//\

Sl
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Tameness of periods

~ Tameness of period map was shown in [Bakker,Klingler, Tsimerman ‘18]

Theorems:

+ Weil operator C' is definable in Ry, exp -

: G orthogonal group of Q(-, -)
o G/K K orthogonal group of Q(-, Cy-)

Proof: uses crucially nilpotent orbit theorem.

+ Weil operator period map ® is definable in Ry, exp -

¢: X -I'\G/K T orthogonal group of Q(,")|m,
(bigger than monodromy group)

Proof: uses sl(2) orbit theorem.

» Period map is definable in Ry, exp -
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Tl — {(:z;',fv) 2 5 e (JED 0 e, and Qlw,n) = é}

is algebraic, and the restriction of P to this set is proper with finite fibers.

~ follows from the Hodge conjecture for Hodge structures associated
to families of projective Kdhler manifolds Y

-~ covers finiteness of the special case: G, € H 4 (V. 20 H 22

(supersymmetric fluxes)

~ original proof uses Hodge theory: nilpotent orbit theorem [Schmid]
SI(2) orbit theorem [Cattani,Kaplan,Schmid]
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Reminder of a famous theorem

Theorem [Cattani,Deligne,Kaplan '95]: For integer ¢ > 0, locus of integral
Hodge classes

Tl — {(x,v) 2 5 e (JED 0 e, and Qlw,n) = Z}

is algebraic, and the restriction of P to this set is proper with finite fibers.

~ proof using tameness of period map: [Bakker,Klingler, Tsimerman ‘18]

‘o-minimal Chow’ [Peterzil Starchenko]: complex analytic + tame — algebraic

~ (Calabi-Yau fourtfold: W=0, oW=0 W = / ¢, 9"
Y

— more equations than unknowns — theory of unlikely intersections
e.g. [Baldi, Klingler,Ullmo]

— relies on holomorphicity: often absent in physical situations




Generalization to self-dual classes

Theorem [Bakker, TG,Schnell, Tsimerman]: For integer £ > 0, the locus of
integral self-dual classes

Sy — {(x,v) e ve lly and @ — v and Oy o) — E}

is IR,y exp- definable, closed real-analytic subspace of E and the
restriction of p to this set is proper with finite fibers.




Generalization to self-dual classes

Theorem [Bakker, TG,Schnell, Tsimerman]: For integer ¢ > 0, the locus of
integral self-dual classes

Sy — {(x,v) e ve lly and @ — v and Oy o) — E}

is IR,y exp- definable, closed real-analytic subspace of E and the
restriction of p to this set is proper with finite fibers.

= Note: - locus is, in general, only real — leave complex geometry!




Generalization to self-dual classes

Theorem [Bakker, TG,Schnell, Tsimerman]: For integer £ > 0, the locus of
integral self-dual classes

Sy — {(x,v) e ve lly and @ — v and Oy o) — E}

is IR,y exp- definable, closed real-analytic subspace of E and the
restriction of p to this set is proper with finite fibers.

= Note: - locus is, in general, only real — leave complex geometry!
- use asymptotic Hodge theory? sl(2)-orbit theorems?




Generalization to self-dual classes

Theorem [Bakker, TG,Schnell, Tsimerman]: For integer £ > 0, the locus of
integral self-dual classes

Sy — {(x,v) e ve lly and @ — v and Oy o) — E}

is IR,y exp- definable, closed real-analytic subspace of E and the
restriction of p to this set is proper with finite fibers.

= Note: - locus is, in general, only real — leave complex geometry!
- use asymptotic Hodge theory? sl(2)-orbit theorems?

= works well for one-parameter limits [Schnell] [TG] '20,
but too involved for multi-parameter limits




Generalization to self-dual classes

Theorem [Bakker, TG,Schnell Tsimerman]: For integer ¢ >0, the locus of
integral self-dual classes

Sy —= {(w,v) e ve lly and @ — v and Oy o) — E}

is IR,y exp- definable, closed real-analytic subspace of E and the
restriction of p to this set is proper with finite fibers.

= Proof: - tameness of Weil operator period map @
- tameness of maps between bundles &y : E — I'\(G/K x Hc)

- lattice reduction: [e.g. Kneser]
group I' actsonset {v € Hz : Q(v,v) = £} with finitely many orbits.

- tameness of self-dual locus in a single orbit



Generalization to self-dual classes

Theorem [Bakker, TG,Schnell, Tsimerman]: For integer ¢ > 0, the locus of
integral self-dual classes

Sy — {(x,v) e ve lly and @ — v and Oy o) — E}

is IR,y exp- definable, closed real-analytic subspace of E and the
restriction of p to this set is proper with finite fibers.

Question 1: What are the cycles associated to self-dual classes?
(like in Hodge conjecture)

— relevant in physics ‘holography’ [Liist, Vafa, Wiesner, Xul]
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Consider compact CY fourfold. Fix . For dimM > O(1)¢ :
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Note: General evidence for loci realized in M where period map is sl(2)-orbit.
[Grafia, TG,van de Heisteeg,Herraez,Plauschinn ‘22]
nilpotent orbit: [TG Monnee] in progress



Tadpoles and a new conjecture

-~ Condition Q(U7 v) — ¢ (tadpole condition) is central to tameness

— in physics this is arising from consistent coupling with gravity!

~ A new physics conjecture “Tadpole conjecture”: see also [Hebecker’s talk]
[Bena,Blaback,Grana,Liist]...[Becker, Walcher, Wrase]

Consider compact CY fourfold. Fix . For dimM > O(1)¢ :
min |dim Comp(H,)| > 0

Question 2: Can one prove such a conjecture for Hy or Sy ?
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Perturbative QF'T's

= Scattering amplitudes

P1

5 A(pz‘)

How likely is the process?

external
particles

D2 P4

= Physics: defined using path integrals - “sum over all possible processes”

= Perturbative expansion: small coupling expansion A < 1

— summing till fixed loop number: finite number of Feynman integrals
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Perturbative QF'T's

~ Theorem™ For any renormalizable QFT with finitely many particles and
interactions all finite-loop amplitudes are tame functions of the masses,

external momenta, and coupling constants. [Douglas, TG,Schlechter "22]
*physics style
A A
p p AQ(m17m27<L37/)\7p)
ms tame in all parameters

hidden finiteness property in all QFT amplitudes

Remarks: - theorem is non-trivial: interesting implications for
Feynman amplitudes (symmetry — relations) [in progress]
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Why 1s this true?

~ amplitudes are composed of finitely many Feynman integrals

= Basic idea: Feynman integrals are tame by relating them to period
integrals of some auxiliary compact geometry Y,

review book by [Weinzierl] + many works [Bloch,Kerr,Vanhove] [Klemm etal.]...

= Use: all steps only involve tame maps,
period integrals are tame maps in o-minimal structure Ray, exp

|Bakker,Klingler, Tsimerman 18] [Bakker,Mullane "22] related [Comte,Lion,Rolin]

Tameness of (relative) periods

e —» Tameness of Feynman integrals

10
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Observables in QF'T

~ interested in physical observables in local QFTs

particle described by the field ¢
— dynamics encoded by Lagrangian, e.g. £ = 2(9¢)° — 2m*¢° — £ A"
X

parameters of the model

N |—

=~ compute correlation functions: (up to normalization)
- d
(O1(y1)---Ok(yx)) » D¢ O1(y1)...Ox (yx) e Jo 47¥EAmM)
local operator at some path integral over exponential weight

space-time point y1 € X all field configurations ~ by parameter-dep.
(e.g. polynomial in @) Lagrangian



Observables in QF'T

~ interested in physical observables in local QFTs

particle described by the field ¢
— dynamics encoded by Lagrangian, e.g. £ = 2(9¢)° — 2m*¢° — £ A"

L

parameters of the model

N |—

=~ compute correlation functions: (up to normalization)

(O1(y1)---Or(yx)) A

— complicated function on product of space-time X x ... X X
and parameter space P
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Simplest example

: : m? S el 3Im? 3
= (Consider in 0d: S = om0 7 e | tame?

=

Observations: K 1 (%) does not have an analytic expansion at A = 0
— trans-series, not in Ry exp

Pfaffian chain: arising functions described by polynomials Q)(x, f1, f2)

with 5 f1(x) = Pu(x, f1(x))
g: ol Boln flla, o)

— 0d theory is tame in Pfaffian structure Ry, £, € Ran exp
but: special structure which is ‘sharply o-minimal’ [Binyamini,Novikov]

— well-defined notion of complexity for physical systems
[TG,Schlechter, van Vliet] to appear
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Challenges in mathematics

= QFTs on finite lattice

correlation functions in 0d are ordinary integrals

<(910n>>\ — /d¢1d¢k (91(9n 6_5(0)(¢’)\) tame?

Conjecture [van den Dries][Kaiser]: Given a real-valued tame function f(\, ¢)
(in some o-minimal structure S ) the integral

g(r) = / I @i

is also a tame function (in some o-minimal structure S ).

Note: Theorem for S=R,, - S=R

However, for non-perturbative results, we need exponential tobein §.

an,exp- [Comte,Lion,Rolin]



Challenges in mathematics

= QFTs on finite lattice

correlation functions in 0d are ordinary integrals

<(910n>>\ = /d¢1d¢k (91(977, 6_5(0)@5)\)

= math. conjecture implies: [Douglas, TG,Schlechter '23]

in order that physical observables (O1...0,) » are tame functions of

parameters A one needs to require:

SO (4, \) istame function of \, ¢



Challenges in mathematics

= QFTs on finite lattice

correlation functions in 0d are ordinary integrals

<010n>>\ = /d¢1d¢k OlOn G_S(O)(va)‘)

special, but interesting case: exponential periods with parameters

II(\) :/Fe_fo‘)w()\)

f(A) algebraic function
w(A) algebraic differential form

Question 3: Are exponential periods definable in P(Ran exp)?
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Are all QFT's tame?

= Non-tameness of Lagrangian: easy to get non-tame Lagrangian by
picking non-tame potential V(x)

Simple:  V(0) = Acos(f) + B cos(a0) a irrational

Fancy: vacuum locus is infinite spiral
— existence would also challenge Distance Conjecture

|TG,Lanza,Li]

More Fancy: W, =YP:(Xy,...,Xp)> + ) Zu(sin2miX,)*  [Tachikawa]

Existence of supersymmetric vacua is undecidable!

~ in general: tameness depends on the UV origin of the theory

15
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~ Tameness of Conformal Field Theory: precise conjectures
[Douglas, TG,Schlechter "23]

(1) Correlation / partition functions are tame functions over Euclidean
space-time and over parameter space.

(2) Space of CFTs is tame set under certain conditions (e.g. bound on degrees of
freedom).



Mapping out the tame parts of physics

~ Tameness of Conformal Field Theory: precise conjectures
[Douglas, TG,Schlechter "23]

(1) Correlation / partition functions are tame functions over Euclidean
space-time and over parameter space.

(2) Space of CFTs is tame set under certain conditions (e.g. bound on degrees of
freedom).

~ Tameness of effective theories compatible with Quantum Gravity

tame set of effective theories
that has tame physical
observables

models consistent with
Quantum Gravity



Thanks!
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Are all QFT's tame?

= No! e.g. consider discrete symmetry group G
Z(g-A)=Z(\)  —nevertameif |Gl is infinite

— tameness requires that all such symmetries are gauged or eventually
broken in full Z

— Fits with best understood conjectures about
Quantum Gravity: ‘No global symmetries in QG’

[Banks,Dixon][Banks,Seiberg]

= Klein-Gordon field of mass m :

(d—1)/2

— in AdS space: propagator  Oags,,, (y1,¥y2) o Q\/ d2 J4+m?>—1/2

(Y192)

Legendre function of second kind not tame in the mass 1M — 0O

Solutions: introduce cut-off m < Ayvy
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