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Vorlesungsskript mit Übungen für ca 28 Vorlesungen á 90 Minuten.
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3 Cayleygraphen und
Quasi-Isometrie

Caylegraphen sind Graphen, die einem Paar (G,S) zugeordnet werden, wobei G eine
Gruppe und S ein Erzeugendensystem ist. Ein Cayleygraph enthält je eine Ecke pro
Gruppenelement, die mit Kanten verbunden sind, wenn sich die entsprechenden Grup-
penelemente genau durch rechts-Multiplikation mit einem Erzeuger unterscheiden. Die
Betrachtung von Cayleygraphen als geometrisches Bild einer Gruppe geht auf Max Dehn
zurück. Im Allgemeinen sind Cayleygraphen zu verschiedenen Erzeugendensystemen der
selben Gruppe nicht isomorph zueinander. Mann kann sie dennoch als geometrische Ver-
sion der Gruppe betrachten, da sie in einem groben Sinn - nämlich bis auf quasi-Isometrie
- eindeutig sind. Der Satz von Milnor und Švarc (Theorem 3.3.9) erweitert diese geo-
metrische Betrachtungsweise für Gruppen um weitere beliebige geodätische metrische
Räume, auf denen die Gruppen geeignet wirken und bildet damit den Grundstein für
viele weitere Methoden der geometrischen Gruppentheorie.

3.1 Metrische Graphen und geodätische metrische
Räume

Cayleygraphen haben wir bereits in Definition 1.3.19 eingeführt. Ziel dieses Kapitels ist
es, Cayleygraphen als metrische Räume zu betrachten und deren Eigenschaften genauer
zu untersuchen. Insbesondere wollen wir verstehen, welche Eigenschaften einer Gruppe
genau in ihren Cayleygraphen kodiert sind und in welchem Sinne alle Cayleygraphen
einander entsprechen.

Definition 3.1.1 (Längen von Kurven). Sei (X, d) metrischer Raum und sei α :
[0, 1] → X stetig, also eine Kurve in X. Dann ist die Länge von α gegeben durch

l(α) := sup
∑

i=0,...,n−1

d(α(ti), α(ti+1)).

Das Supremum wird hier über alle Zerlegungen des Intervalls [0, 1] gebildet, d.h.
über alle Wahlen von ti mit 0 = t0 < x1 < . . . < tn−1 < tn = 1 für beliebige n ∈ N.

Insbesondere gilt für alle Kurven α, dass l(α) ≥ d(α(0), α(1)) ist. Für die Verkettung
α∗β zweier Pfade α, β : [0, 1] → X mit α(1) = β(0) gilt außerdem l(α∗β) = l(α)+ l(β).



Die obige Formel zur Längenberechnung können wir nutzen, um in der metrischen
Realisierung eines Graphen eine Abstandsfunktion zu definieren.

Definition 3.1.2 (Metrische Realisierung eines Graphen). Wir können einen Gra-
phen Γ = (V,E, δ) metrisch realisieren, d.h. einen metrischen Raum definieren,
dessen unterliegende kombinatorische Struktur gerade der gegebene Graph ist.
Dazu versehen wir zunächst jede Kante e mit einem Label, d.h. wir ordnen der
Kante eine positive Zahl l(e) zu, die wir Länge der Kante nennen.
Identifiziere jedes Ende einer Kante e mit je einem Ende des Intervalls [0, l(e)].
Sind die Kanten in Γ orientiert, so identifizieren wir immer die Quelle der Kante
mit 0 und die Senke der Kante mit l(e).
Die metrische Realisierung |Γ| von Γ ist folgender metrischer (Quotienten-)Raum:
Als Menge ist die metrische Realisierung gegeben durch

|Γ| =
⋃
e∈E

[0, l(e)]⧸∼,

wobei wir die Endpunkte zweier Intervalle genau dann miteinander identifizieren,
wenn die zugehörigen Ecken in Γ identisch sind.
Definiere eine Abstandfunktion d : |Γ| × |Γ| → R≥0 wie folgt:

d(x, y) = inf
γ:x⇝y

l(γ)

wobei das Infimum über alle stetigen Pfade γ : [0, 1] → |Γ| von x nach y gewählt
ist, deren Länge durch die Formel in Definition 3.1.1 berechnet wird. Dabei wählen
wir die Zerlegungen so, dass die Teilabschnitte der Kurve jeweils in einem Intervall
enthalten sind.

Definition 3.1.3 (Geodätische und geodätischer Raum). Sei (X, d) ein metrischer
Raum. Sei γ : [0, 1] → X ein Pfad in X.

1. Der Pfad γ ist eine Geodätische in X, wenn gilt: l(γ) = d(γ(0), γ(1)).

2. Der Pfad γ ist eine lokale Geodätische, wenn für alle t ∈ [0, 1] ein ϵ > 0
existiert für das γ|[t−ϵ,t+ϵ] eine Geodätische ist.

3. Ein metrischer Raum X heißt geodätisch, wenn für alle Paare x, y ∈ X eine
Geodätische von x nach y existiert, d.h. eine Geodätische α mit α(0) = x,
α(1) = y.

Beispiele für geodätische metrische Räume sind metrische Realisierungen von Graphen,
der euklidische Raum oder allgemeiner glatte, Riemannsche Mannigfaltigkeiten.

Beispiel 3.1.4. Nicht jeder metrische Raum ist geodätisch. Betrachte zum Beispiel als
metrischen Raum X die Menge R2 ohne den Ursprung mit eingeschränkter euklidischer
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Metrik. Dann ist X selbstverständlich ein metrischer Raum, der aber nicht geodätisch
ist. Für beliebige Paare von Punkten x, y, die auf verschiedenen Seiten des Ursprungs
auf einer Ursprungsgeraden liegen, gibt es keine verbindende Geodätische.
Auch müssen Geodätische in metrischen Räumen nicht eindeutig sein. Es kann pas-

sieren, dass es zwischen zwei Punkten viele, möglicherweise sogar unendlich viele Geo-
dätische gibt. Als Beispiel betrachte die in R3 eingebettete 2-Sphäre mit der üblichen
intrinsischen Metrik. Dann gibt es zwischen Nord- und Südpol unendlich viele Geodäti-
sche, die entlang der Längengrade verlaufen.

Definition 3.1.5 (Metrisch realisierte Cayleygraphen). Die metrische Realisie-
rung eines Cayleygraphen Cay(G,S) ist die metrische Realisierung von Cay(G,S)
wie in Definition 3.1.2, mit Kantenlänge l(e) = 1 für alle Kanten e.

Bemerkung 3.1.6. Analog zu Definition 3.1.5 erhalten wir auch eine Metrik auf | #               —

Cay(G,S)|
(durch Ignorieren der Orientierung), sowie eine Metrik auf G, also den Ecken des Cay-
leygraphen, durch Einschränken der Metrik.

Definition 3.1.7 (Wortmetrik). Für zwei Elemente g, h ∈ G definieren wir die
Wortmetrik

dS(g, h) := min{n | es ex. s1, . . . , sn ∈ S mit g−1h = s1 . . . sn}.

Lemma 3.1.8. Für G erzeugt von S und alle g, h ∈ G gilt:

1. Für die Wortmetrik gilt dS(g, h) = 0 genau dann, wenn g = h ist.

2. Die Wortmetrik aus Definition 3.1.7 stimmt mit der eingeschränkten Me-
trik der geometrischen Realisierung des Cayleygraphen aus Definition 3.1.5
überein.

Beweis. Siehe Übungsaufgabe Übungsaufgabe 6.3.1.

Lemma 3.1.9 (Eigenschaft der Linkstranslation). Sei G eine durch S endlich
erzeugte Gruppe. Dann ist die Linkstranslationswirkung von G auf |Cay(G,S)|
und | #               —

Cay(G,S)| eine Wirkung durch Isometrien.

Beweis. Fixiere ein Erzeugendensystem S. Definiere für alle g ∈ G einen Automorphis-
mus ϕg auf dem metrisch realisierten Cayleygraphen durch ϕg(x) := gx für alle Ecken
x ∈ G. Für Punkte x auf einer metrisch realisierten Kante {h1, h2 = h1s} definiere ϕg(x)
als den eindeutigen Punkt x′ auf der Kante {gh1, gh2}, für den gilt d(gh1, x′) = d(h1, x).
Man kann nachrechnen, dass die so definierten Abbildungen ϕg für alle g ∈ G Isometrien
des metrisch realisierten Cayleygraphens sind. Insbesondere gilt ϕg ◦ ϕh = ϕgh.
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Lemma 3.1.10 (Eigenschaften von |Cay(G,S)|). Für jede Gruppe G mit endli-
chem Erzeugendensystem S gilt:

1. Sowohl der orientierte als auch der unorientierte Calyey Graph ist eigent-
lich bzgl. der Wortmetrik dS, d.h. abgeschlossene Bälle sind kompakt. Die
geometrischen Realisierungen sind ebenfalls eigentlich.

2. Der metrische Raum |Cay(G,S)| ist geodätisch.

Beweis. Die erste Eigenschaft folgt aus der Tatsache, dass jeder Ball von endlichem,
ganzzahligem Radius die Vereinigung endlich vieler Kanten ist. Ebenso lässt sich jeder
andere Ball mit endlichem Radius durch endlich viele Kanten überdecken.
Um 2. zu zeigen gehen wir wie folgt vor. Die Einschränkung der Metrik der metrischen

Realisierung auf die Ecken des Cayleygraphen entspricht der Wortmetrik dS. Somit ist
der Abstand zweier Ecken g, h ∈ G gerade die Wortlänge von g−1h. Jedes kürzeste Wort
für g−1h definiert somit einen Kantenzug, der eine Geodätischen g ; g entspricht. Somit
haben wir bereits Geodätische für beliebige Paare von Ecken konstruiert.
Sind x, y Punkt auf einer selben Kante, so existiert eine Geodätische von x nach y

innerhalb dieser Kante.
Es bleibt noch der Fall zu betrachten, dass zwei Punkte x, y ∈ |Cay(G,S)| gegeben sind,

die nicht beide Ecken sind und nicht beide in einer Kante liegen. In diesem Fall wähle
g und h so, dass sowohl d(x, g) als auch d(y, h) < 1 ist, und d(x, g) + dS(g, h) + d(h, y)
kleinstmöglich ist. Für die so gewählten Ecken g und h gilt d(x, y) = d(x, g)+dS(g, h)+
d(h, y).
Man prüfe leicht nach, dass dann die Verkettung der drei Geodätischen x ; g, g ; h

und h; y ebenfalls eine Geodätische von x nach y liefert.

Mit den bisherigen Betrachtungen dieses Kapitels wissen wir nun, dass jede endlich
erzeugte Gruppe auf eigentlichen, geodätischen Räumen (nämlich der metrischen Rea-
lisierung ihrer Cayleygraphen) wirkt. Das mag erst einmal richtig gut klingen und wird
in der Tat auch noch sehr nützlich sein. Aber Achtung: ohne weitere Annahmen an die
Wirkung bzw. den Raum ist das nicht besonders hilfreich, da jede beliebige Gruppe
(trivial) auf dem Ein-Punkt-Raum wirkt, der die selben Eigenschaften besitzt.
Im Gegensatz dazu hat die Wirkung auf den Cayleygraphen gute Eigenschaften, die

dann weitreichende Konsequenzen haben.

Definition 3.1.11 (Eigentlich diskontinuierliche Wirkungen). Eine Wirkung einer
Gruppe G auf einem metrischen Raum (X, d) heißt eigentlich diskontinuierlich,
falls für alle Bälle B ⊆ X gilt

|{g ∈ G | B ∩ g.B ̸= ∅}| <∞.

Das heißt: für alle x ∈ X und alle Bälle B ⊆ X ist nur für endlich viele g ∈ G der
Punkt g.x ebenfalls in B.
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Lemma 3.1.12 (Eigenschaften eigentlich diskontinuierlicher Wirkungen). Eine
Gruppe G wirke eigentlich diskontinuierlich auf einem metrischen Raum (X, d).
Dann gilt:

1. Punktstabilisatoren sind endlich, d.h. für alle x ∈ X ist der Stabilisator
Gx := {g ∈ G | g.x = x} eine endliche Menge.

2. Orbiten der G-Wirkung auf X haben keine Häufungspunkte als Teilmengen
von X.

Beweis. Diese Eigenschaften folgen direkt aus Definition 3.1.11.

Definition 3.1.13 (Kobeschränkte Wirkungen). Eine Wirkung einer Gruppe G
auf einem metrischen Raum (X, d) heißt kobeschränkt, wenn es einen Ball B ⊆ X
gibt mit G.B = X

Lemma 3.1.14 (Eigenschaften von G ↷ Cay(G,S)). Sei G endlich erzeugte
Gruppe. Dann ist die Linkstranslationswirkung auf einem beliebigen Cayleygraphen
eigentlich diskontinuierlich und kobeschränkt.

Beweis. Wir zeigen zunächst, dass die Linkstranslationswirkung eigentlich diskontinu-
ierlich ist. Sei v eine Ecke in Γ := Cay(G,S). Dann ist G.v = V (Γ). Es ist klar, dass
jeder Ball mit endlichem Radius um v nur endlich viele andere Ecken enthält. Da die
Wirkung frei ist folgt daraus bereits die Behauptung.
Für die Kobeschränktheit betrachte als geeignetes B einen Ball mit Radius 1 um eine

beliebige Ecke.

Wir lernen jetzt eine erste Anwendung dieser schönen Wirkungen auf guten metrischen
Räumen kennen. Dabei nutzen wir folgende Sprechweise:

Definition 3.1.15 (Virtuell P). Eine Gruppe G hat virtuell die Eigenschaft P ,
wenn die Gruppe G eine Untergruppe H von endlichem Index in G besitzt, die
die Eigenschaft P besitzt.

Hat G virtuell P so muss G selbst nicht unbedingt die Eigenschaft P haben.

Theorem 3.1.16 (Virtuell-Z Gruppen). Ist G endlich erzeugt und wirkt eigentlich
diskontinuierlich und kobeschränkt durch Isometrien auf R, so ist G virtuell Z, d.h.
G besitzt eine Untergruppe von endlichem Index, die zu Z isomorph ist.

Beweis. Bezeichne mit Ψ : G→ Iso(R) die Wirkung von G auf R. Der Raum R ist ge-
ordnet und jeder Isomorphismus von R ist entweder ordnungserhaltend (alle Translatio-
nen) oder ordnungsumkehrend (beispielsweise Spiegelungen). Das erlaubt uns, folgenden
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Homomorphismus zu betrachten:

Iso(R) → Z/2Z ; ϕ 7→

{
1 wenn ϕ die Ordnung umkehrt
0 wenn ϕ die Ordnung erhält .

Sei K der Kern dieses Homomorphismus. Dann ist G′ := Ψ−1(K ∩ Ψ(G)) eine Unter-
gruppe von G und der Index von G′ in G ist höchstens 2. Jedes g ∈ G′ wirkt durch
Translation auf R, weil es die Ordnung erhält. Sei nun m das Infimum des positiven
Teils des Orbits der Null, d.h.

m := inf(G′.0 ∩ R>0).

Aus der Kobeschränktheit der Wirkung erhalten wir, dass G′.0 ∩ R>0 ̸= ∅. Da die
Wirkung eigentlich diskontinuierlich ist, folgt außerdem, dass das Infimum ein Minimum
sein muss, da kein Orbit Häufungspunkte hat. Also gilt insbesondere m > 0.
Betrachte jetzt die Abbildung

φ : G′ → R : g 7→ Ψ(g)(0).

Dann ist φ(G′) ⊆ mZ. Wir zeigen, dass φ ein Homomorphismus ist. Sei für g ∈ G′ die
Zahl tg ∈ R so gewählt, dass für alle x ∈ R gilt:

Ψ(g)(x) = x+ tg.

Ein solche Wahl für die tg ist möglich, da G′ durch Translationen wirkt. Insbesondere
ist dann φ(g) = Ψ(g)(0) = tg und somit auch

tgh = φ(gh)(0) = φ(g)(0) + φ(h)(0) = tg + th.

Weiter ist mit Lemma 3.1.12 die Menge F := Ker(φ) = StabG′(0) endlich, da die
Wirkung von G auf R eigentlich diskontinuierlich ist. Somit ist

1→ F → G′ φ→ mZ ∼= Z → 1

eine exakte Sequenz mit Schnitt s : mZ → G′ für den gilt φ ◦ s = id. Das Bild s(mZ)
ist isomorph zu Z und hat in G′ endlichen Index. Weil G′ in G endlichen Index hat,
hat dann auch s(mZ) endlichen Index in G und liefert uns eine Untergruppe mit der
gesuchten Eigenschaft.
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3.2 Cayleygraphen erkennen

Wir gehen jetzt der Frage nach, welche Graphen überhaupt als Cayleygraphen auftau-
chen können.

Definition 3.2.1 (Äquivalente Wirkungen). Zwei Wirkungen ρ1 : G → Aut(X1)
und ρ2 : G→ Aut(X2) heißen äquivalent, wenn ein Isomorphismus f : Aut(X1) →
Aut(X2) existiert, sodass für alle g ∈ G und alle xi ∈ Xi gilt:

g.f(xi) = f(g.xi).

Wirkungen auf Graphen sind äquivalent, wenn sowohl die Ecken- als auch die
Kantenwirkungen äquivalent sind im obigen Sinne.

Cayleygraphen kann man anhand ihrer Automorphismen wie folgt erkennen.

Theorem 3.2.2 (Satz von Sabidussi). Sei Γ ein schleifenfreier Graph und G eine
Gruppe. Dann gilt:

1. Eine Wirkung von G auf Γ ist genau dann äquivalent zur Linkstranslati-
onswirkung von G auf Cay(G,S) für ein (geeignetes) reduziertes Erzeugen-
densystem S von G, wenn die Eckenwirkung von G auf V (Γ) transitiv und
fixpunktfrei ist.

2. Der Graph Γ ist genau dann ein Cayleygraph einer Gruppe G bezüglich eines
reduzierten Erzeugendensystems S, wenn Aut(Γ) eine Untergruppe enthält,
die transitiv und fixpunktfrei auf V (Γ) wirkt.

Beweis. Teil 2 des Satzes lässt sich leicht aus dem ersten Teil ableiten, da die Links-
translationswirkung transitiv und fixpunktfrei auf den Ecken von Γ wirkt.
Für 1. argumentiere wie folgt: Ist die Linkstranslationswirkung äquivalent zur G-

Wirkung, dann entspricht die Eckenwirkung gerade der Multiplikation in G und ist somit
transitiv und fixpunktfrei. Sei umgekehrt die Eckenwirkung transitiv und fixpunktfrei,
so argumentiere in mehreren Schritten wie folgt.
Schritt 1: Wir definieren ein Erzeugendensystem S. Wähle dazu zunächst eine feste

Ecke x in Γ und setze

S̄ := {g ∈ G | Die Ecken g.x und x sind benachbart}.

Sei jetzt s ∈ S̄. Dann ist nach Definition e = {x, sx} eine Kante in Γ. Da G durch
Automorphismen auf Γ wirkt, ist aber auch s−1e = {s−1x, x} eine Kante. Daraus folgt,
dass die Menge S̄ abgeschlossen ist unter Inversenbildung.
Da die Eckenwirkung fixpunktfrei ist, gilt für ein s ∈ S̄ entweder, dass s−1x = sx und

damit s = s−1 ∈ S̄, oder es gilt s−1x ̸= sx und damit auch s−1 ̸= s und beide sind in S̄
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enthalten.
Definiere nun eine Menge S wie folgt: Für s = s−1 in S̄ sei s ∈ S. Für s ̸= s−1 in S̄

wähle eines der beiden Elemente aus und sei dieses in S. Wir können die Wahl so treffen,
dass für alle benachbarten Ecken y von x gilt, dass y = sx für ein s in S ist.
Es bleibt noch zu zeigen, dass S die Gruppe G wirklich erzeugt1.
Schritt 2: Wir definieren jetzt einen Morphismus von Graphen. Sei jetzt Γ′ := Cay(G,S) =

(V ′, E ′). Wir suchen einen Morphismus f : Γ′ → Γ = (V,E). Sei x die oben fixierte Ecke.
Für h ∈ G setze dazu f(h) := hx. Ist e = {h1, h2} eine Kante in Γ′, so existiert (nach
Definition) ein s ∈ S mit h2 = h1s. Dann ist f(h2) = h2x = h1sx und f(h1) = h1x und
{h1sx, h1x} = h1.e ist eine Kante, da für alle s ∈ S die Ecken sx und x benachbart sind.
Somit ist f ein Morphismus von Graphen.
Schritt 3: Es bleibt noch zu zeigen, dass der Morphismus f aus Schritt 2 ein Isomor-

phismus ist. Die Abbildung f ist injektiv, da die Eckenwirkung ρV fixpunktfrei ist. Daher
gilt, dass aus gx = hx folgt, dass g−1hx = x. Somit ist g−1h = 1. Die Abbildung f ist
aber auch surjektiv, da ρV transitiv ist und daher für alle y ∈ V ein g ∈ G existiert mit
gx = y. Es ist dann aber y = f(g).
Es ist noch zu zeigen, dass für jede Kante e = {y1, y2} in Γ auch f−1(e) eine Kante in

Γ′ ist. Siehe dazu Übungsaufgabe 6.3.2.

3.3 Quasi-Isometrie und das Milnor-Švarc Lemma

In diesem Kapitel untersuchen wir, inwieweit Cay(G,S) von der Wahl eines Erzeugen-
densystems S abhängt. Hintergrund dafür ist, dass es einige relevante Eigenschaften von
Gruppen gibt, die unabhängig von der Wahl eines Erzeugendensystems gelten. Meist
möchte man eine Gruppe G unabhängig von der Wahl eines Erzeugendensystems be-
trachten.

Definition 3.3.1 (quasi-isometrische Einbettung). Seien X, Y metrische Räume
und sei f : X → Y eine Abbildung. Weiter seien zwei reelle Konstanten C ≥ 1
und D ≥ 0 gegeben. Dann ist f eine (C,D)-quasi-isometrische Einbettung, wenn
für alle x, y ∈ X gilt:

1

C
d(x, y)−D ≤ d(f(x), f(y)) ≤ Cd(x, y) +D.

Eine (C,D)-quasi-isometrische Einbettung f hat quasi-dichtes Bild in Y , wenn
für alle y ∈ Y ein x ∈ X existiert mit d(f(x), y) ≤ D.
Eine (C,D)-quasi-Isometrie ist eine eine (C,D)-quasi-isometrische Einbettung mit
quasi-dichtem Bild.

1Einen Beweis gibt es zum Beispiel hier: https://www.math.uni-hamburg.de/home/hamann/Lehre/
GeoGrTh/GeoGrTh.pdf siehe Satz 1.3.2. In der Vorlesung hatten wir den Beweis auch durchgeführt.
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Bemerkung 3.3.2. Wir sagen f ist eine quasi-isometrische Einbettung, wenn es eine
(C,D)-quasi-Isometrie für eine geeignete Wahl von C und D ist. Eine (C, 0)- quasi-
isometrische Einbettung ist gerade eine Bilipschitz-Einbettung.

Beispiel 3.3.3. Die Inklusionsabbildungen von 2Z nach Z und Z nach R sind quasi-
isometrische Einbettungen (mit C = 1 und D = 0), aber keine bilipschitz-Äquivalenzen,
da sie nicht surjektiv sind. Vergleiche dazu Abbildung 3.1

Abbildung 3.1: Veranschaulichung der Einbettungen.

Definition 3.3.4 (quasi-Inverse). Sei f : X → Y eine Abbildung zwischen metri-
schen Räumen. Dann ist g : Y → X eine quasi-Inverse von f , wenn es ein D ≥ 0
gibt, sodass für alle x ∈ X gilt:

dX((g ◦ f)(x), x) ≤ D

und sodass für alle y ∈ Y gilt:

dY ((f ◦ g)(y), y) ≤ D.

Beispiel 3.3.5. Die Wahl des größten Ganzen, d.h. die Abbildung

f : R → Z : x 7→ ⌊x⌋,

sowie die Abbildung

g : Z → 2Z : x 7→

{
x x gerade
x− 1 x ungerade

sind beides quasi-isometrische Einbettungen mit C = 1 = D. Die Abbildungen g und f
sind quasi-Inverse der Inklusionsabbildungen von Z nach R beziehungsweise 2Z nach Z.
Insbesondere haben f ◦ ι und ι◦f endlichen Abstand zur Identitätsabbildung id (ebenso
g ◦ ι und ι ◦ g). Siehe dazu die pinken Pfeile in Abbildung 3.1 zur Veranschaulichung.

Wir zeigen jetzt ein paar elementare Eigenschaften von quasi-isometrischen Einbettun-
gen und quasi-Isometrien.
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Lemma 3.3.6 (Eigenschaften von quasi-Isometrien).

1. Die Verkettung quasi-isometrischer Einbettungen (von quasi-Isometrien) ist
wieder eine quasi-isometrische Einbettung (quasi-Isometrie).

2. Sei f eine quasi-isometrische Einbettung. Dann ist f eine quasi-Isometrie
genau dann, wenn es eine quasi-Inverse besitzt.

3. Quasi-isometrisch zu sein ist eine Äquivalenzrelation.

Insbesondere bildet die Menge aller quasi-Isometrien eines Raumes eine Gruppe.

Beweis. Beweis von 1: Seien f : X → Y und g : Y → Z quasi-isometrische Einbettungen
bezüglich (C,D). Dann gilt für alle x, y ∈ X

d(g(f(x)), g(f(y))) ≤ C · d(f(x), f(y)) +D

≤ C2 · d(x, y) + C ·D +D.

Umgekehrt gilt Folgendes: Für f, g zwei (C,D)-quasi-Isometrien, wähle z ∈ Z. Es exis-
tieren also ein y ∈ Y mit d(g(y), z) ≤ D und ein x ∈ X mit d(f(x), y) ≤ D (wegen der
quasi-Dichtheit).
Somit ist

d((g ◦ f)(x), z) ≤ d((g ◦ f)(x), g(y)) + d(g(y), z)

≤ (CD +D) +D.

Also ist g ◦ f eine quasi-isometrische Einbettung.
Für 2. siehe Übungsaufgabe 6.3.3.
Teil 3 der Behauptung folgt aus den ersten beiden mit der zusätzlichen Beobachtung

dass die Identitätsabbildung eine quasi-Isometrie eines Raumes auf sich selbst ist.

Jetzt können wir zeigen, dass sich zwei Cayleygraphen einer Gruppe G bis auf Quasi-
Isometrie übereinstimmen.

Theorem 3.3.7 (Cayleygraphen sind quasi-isometrisch). Sei G eine Gruppe mit
endlichen Erzeugendensystemen S und S ′. Dann erweitert id : G → G zu einer
quasi-Isometrie Cay(G,S) → Cay(G,S ′).

Beweis. Betrachte folgende Verkettung von Abbildung von Cay(G,S) nach Cay(G,S ′)

Cay(G,S)
Ψ−→ (G, dS)

id−→ (G, dS′)
ι−→ Cay(G,S ′),

wobei Ψ so gewählt ist, dass x ∈ Cay(G,S) auf g ∈ G abgebildet wird mit dS(x, g) ≤ 1
2
.

Mit ι sei die Inklusionsabbildung bezeichnet. Beide Abbildungen Ψ und ι sind (1, 1)-
quasi-Isometrien. Also ist Ψ ◦ id ◦ ι genau dann eine quasi-Isometrie, wenn id eine quasi-
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Isometrie ist. Da id surjektiv ist, rechnen wir nach, dass idG eine (C, 0)-quasi-Isometrie
ist. Setze dazu

c := max
s∈S±

dS′(1, s).

Es ist c < ∞, da S endlich ist. Seien g, h ∈ G und n := dS(g, h). Dann existieren
si ∈ S ∪ S−1, sodass g−1h = s1 · · · sn. Mit der Dreiecksungleichung und da d′S links-
invariant ist, folgt:

dS′(idG(g), idG(h)) = dS′(g, h)

= dS′(g, gs1 · · · sn)
≤ dS′(g, gs1) + dS′(gs1, gs1s2) + · · ·+ dS′(gs1 · · · sn−1, gs1 · · · sn)
= dS′(1, s1) + dS′(1, s2) + · · ·+ dS′(1, sn)

≤ n · C = C · dS(g, h).

Vertausche die Rollen von S und S ′ und erhalte

dS(idG(g), idG(h)) ≤ C̃ · dS′(g, h),

wobei C̃ := max{dS(1, s′) | s′ ∈ S ′}. Setze nun C0 := max{C, C̃}. Dann ist idG eine
(C0, 0) quasi-Isometrie.

Aus der Ferne sehen also alle Caylegraphen von G gleich aus.
Bemerkung 3.3.8. Theorem 3.3.7 ist im Allgemeinen falsch für unendliche Erzeugen-
densysteme: Betrachte zum Beispiel (Z,+) mit Erzeugendensystem Z \ {0}. Der Cay-
leygraph Cay(Z,Z \ {0}) hat dann endlichen Durchmesser, aber der Cayleygraph von
(Z,+) bezüglich dem Erzeugendensystem {1} hat unendlichen Durchmesser. Ein Raum
mit endlichem Durchmesser kann nicht zu einem Raum mit unendlichem Durchmesser
quasi-isometrisch sein.
Folgender Satz ist das fundamentale Theorem der geometrischen Gruppentheorie und

ein wesentlicher Grund dafür, dass man sich für Gruppen bis auf quasi-Isometrie inter-
essiert.

Theorem 3.3.9 (Milnor-Švarc-Lemma). Sei G eine Gruppe, die eigentlich dis-
kontinuierlich und kobeschränkt auf einem geodätischen metrischen Raum (X, d)
durch Isometrien wirkt. Dann gilt:

1. Die Gruppe G ist endlich erzeugt und

2. G ist quasi-isometrisch zu X.

Korollar 3.3.10. Seien G und X wie in Theorem 3.3.9 gegeben und sei S ein
endliches Erzeugendensystem für G. Dann sind

#               —

Cay(G,S) und Cay(G,S) quasi-
isometrisch zu X.
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Beweis. Das folgt direkt aus der Eigenschaft, dass (G, dS) ∼q.i. Cay(G,S) bzw. dass
(G, dS) ∼q.i.

#               —

Cay(G,S) gilt.

Beweis von Theorem 3.3.9. Zu 1.: Wir zeigen zunächst, dass die Gruppe G endlich
erzeugt ist. Sei dazu x0 ∈ X ein beliebig gewählter Basispunkt in X. Sei R > 0, sodass

X =
⋃
g∈G

g.BR(x0).

Sei B := BR(x0). Wir setzen nun

S := {g ∈ G | g.BR(x0) ∩BR(x0) ̸= ∅}.

Da G auf X eigentlich diskontinuierlich wirkt, ist S endlich.
Wir wollen jetzt zeigen, dass S ein Erzeugendensystem für G ist. Beobachte zunächst,

dass B kompakt ist und somit die Konstante

c := inf{d(B, g.B) | g ∈ G \ S} = inf{d(x, gy) | x, y ∈ B, g ∈ G \ S}

wohldefiniert und echt größer 0 ist. Denn: Sei D die Distanz zwischen B und g.B,
siehe Abbildung 3.2. Es gibt höchstens endlich viele g′.B mit Abstand ≤ D zu B. Das
impliziert wiederum, dass c eigentlich ein Minimum über endlich viele g ∈ G \ S ist.

Abbildung 3.2: Abstand D zwischen G und g.B.

Wähle jetzt ein g ∈ G \ S. Wir wollen g mithilfe der s ∈ S ausdrücken. Es gilt:

d(x0, g.x0) ≥ 2R + c ≥ R + c.

Betrachte dazu Abbildung 3.3.

Abbildung 3.3: Abstand zwischen Mittelpunkten der Bälle, mit kleinstmöglichem Ab-
stand c.

Es existiert also ein k ∈ N≥2, sodass gilt:

R + (k − 1) · c ≤ d(x0, gx0) < R + k · c.

Sei nun γ eine Geodätische von x0 nach gx0. Wähle Punkte xi auf γ, sodass xk+1 =
gx0 ist und sodass d(x0, x1) ≤ R und d(xi, xi+1) < c für alle i = 1, . . . , k gilt (siehe
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Abbildung 3.4). Nach Definition von c gibt es dann gi ∈ G mit g0 = 1, gk = g, sodass
xi+1 ∈ giB, da außerdem X =

⋃
g∈G gB gilt. Siehe dazu Abbildung 3.5.

Abbildung 3.4: Unterteilung der Geodätische γ in hinreichend kleine Abschnitte.

Abbildung 3.5: Mögliches Szenario für Elemente gi+1 mit xi ∈ giB.

Damit für i = 1 jetzt x1 ∈ g0.B = B ist, muss also d(x0, x1) ≤ R sein. Setze si := g−1
i−1 ·gi

für i = 1, . . . , k. Dann ist

d(B, siB) = d(gi−1B, giB) ≤ d(xi, xi+1) < c.

Es folgt si ∈ S.
Nun gilt allerdings:

s1s2 · · · sk = (g−1
0 g1)(g

−1
1︸ ︷︷ ︸

=1

g2) · · · (g−1
k−1gk) = gk = g,

da g0 = 1. Somit ist g durch S darstellbar. Es folgt Aussage (1), G ist endlich erzeugt.
Zu 2.: Als nächstes wollen wir zeigen, dass (G, dS) quasi-isometrisch zu X ist. Wir

definieren die Bahn-Abbildung

f : G→ X

g 7→ g.x0

für ein festes x0 ∈ X.
Nach Konstruktion hat diese Abbildung f ein quasi-dichtes Bild in X (jeder Punkt in
X hat höchstens Abstand R zu einem gx0).
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Es bleibt noch zu zeigen, dass f eine quasi-isometrische Einbettung ist. Das heißt, wir
müssen K ≥ 1 und C ≥ 0 finden, sodass für alle g, h ∈ G gilt:

1

K
dS(g, h)− C ≤ d(gx0, hx0) ≤ KdS(g, h) + C. (3.3.1)

Wir können uns aus folgendem Grund auf den Fall g = 1 beschränken: Es gilt
d(gx0, hx0) = d(x0, (g

−1hx0), da die Gruppe durch Isometrien wirkt. Ferner gilt dS(g, h) =
dS(1, g

−1h), da die Wortmetrik links-invariant ist.
Sei also h ∈ G beliebig und setze

L := max{d(x0, sx0) | s ∈ S}.

Sei K := max{1
c
, L, 2R} und C := max{ 1

K
, c}. Wir werden im Laufe der Rechnung

sehen, warum das die richtige Wahl für K und C ist.
Fall 1: Sei h = 1. Dann ist d(x0, hx0) = dS(1, h) und die Ungleichung 3.3.1 ist erfüllt.
Fall 2: Sei h = s für s ∈ S. Nach der Definition von S ist dann d(x0, sx0) ≤ 2R. Weiter

ist dS(1, s) = 1 und nach Definition oben k ≥ 2R,C ≥ 1
K

. Somit haben wir

1

K
dS(1, s)− C =

1

K
− C ≤ 0 ≤ d(x0, sx0) · · · ≤ 2R ≤ K ≤ K · dS(1, s)︸ ︷︷ ︸

=1

+ C︸︷︷︸
≥0

,

also gilt Ungleichung 3.3.1.
Fall 3: Sei jetzt h ∈ G \ S. Aus dem Beweis von (1) wissen wir, dass dS(1, h) ≤ k ist,

wobei k hier so gewählt ist, dass R + (k − 1) · c ≤ d(x0, hx0) gilt. Daraus folgt

R + (dS(1, h)− 1) · c ≤ d(x0, hx0)

und schließlich
c · dS(1, h)− c ≤ d(x0, hx0)−R

R≥0

≤ d(x0, hx0).

Gilt d(x0, hx0) ≤ L · dS(1, h), so haben wir insgesamt, dass

c · dS(1, h)− c ≤ d(x0, hx0) ≤ L · dS(1, h).

Da K ≥ L und K ≥ 1
c

und C ≥ c ist somit die Ungleichung 3.3.1. Es bleibt also
nur die Behauptung d(x0, hx0) ≤ L · dS(1, h) zu zeigen. Wir schreiben h = s1 · · · sk
(minimal) mit si ∈ S für alle i = 1, . . . , k. Damit gilt nach iterativer Anwendung der
Dreiecksungleichung:

d(x0, hx0) = d(x0, s1 · · · skx0)
≤ d(x0, s1x0) + d(s1x0, s1 · · · skx0)
≤ d(x0, s1x0) + d(s1x0, s1s2x0) + · · ·+ d(s1 · · · sk−1x0, s1 · · · skx0)
= d(x0, s1x0) + d(x0, s2x0) + · · ·+ d(x0, skx0)

≤ L · k = L · dS(1, h).
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Somit gilt (2) und wir sind fertig.

Bemerkung 3.3.11. Milnor-Švarc liefert nur eine quasi-Isometrie, keine Bilipschitz-
Äquivalenz.

Bemerkung 3.3.12. Die Voraussetzungen des Milnor-Švarc Lemmas lassen sich wie folgt
abschwächen:
Es sei die Wirkung G ↷ X durch Isometrien auf einem metrischen Raum (X, d) ge-

geben. Sei weiter X (C,D)-qausi-geodätisch, das heißt für alle x, y ∈ X existiert eine
(C,D)-quasi-Geodäte von x nach y, also eine (C,D)-quasi-isometrische Abbildung (Ein-
bettung) γ : [0, l] → X mit γ(0) = x und γ(l) = y. Außerdem existiere eine Teilmenge
B ⊆ X mit diam(b) <∞ und

X =
⋃
g∈G

g.B,

sodass zusätzlich für B′ := B2D(B) = {x ∈ X | ∃y ∈ B mit d(x, y) ≤ 2D} gilt, dass

S := {g ∈ G | gB′ ∩B′ ̸= ∅}

endlich ist. Dann ist G von S erzeugt und quasi-isometrisch zu X.

Beispiel 3.3.13. Wir verwenden die Notation von Bemerkung 3.3.12. Sei X = R2 mit
der euklidischen Metrik. Der Raum X ist geodätisch und alle geodätischen Räume sind
quasi-geodätisch mit C = 1 und D = 0. Nun wirke G := Z2 ↷ X durch Translationen,
das heißt

Z2 × R2 → X((
n

k

)
,

(
x

y

))
7→

(
x+ n

y + k

)
.

Setze B := [0, 1] × [0, 1]. Dann ist S = {
(
n
k

)
∈ Z2 |

(
n
k

)
.B′ ∩ B′ ̸= ∅} ein Erzeugenden-

system (aber nicht minimal). Hier ist D = 0 also ist B′ = B2D(B) = B. Das impliziert

S =

{(
1

0

)
,

(
0

1

)
,

(
−1

0

)
,

(
0

−1

)
,

(
1

1

)
,

(
−1

−1

)
,

(
−1

1

)
,

(
1

−1

)
,

(
0

0

)}
.

Die Menge S.B ist in Abbildung 3.6 lila dargestellt.
Man könnte äquivalent dazu auch x0 als Mittelpunkt des dunklen Kästchens (bei

(
1
2
, 1
2

)
)

wählen und R = 1√
2

und dann S wählen wie im Beweis von Theorem 3.3.9.

Wir wollen uns jetzt einige direkte Folgerungen aus dem Milnor-Švarc Lemma 3.3.9
anschauen. Abkürzend schreiben wir:

Definition 3.3.14 (Geometrische Wirkung). Eine geometrisch Wirkung G↷ X
ist eine eigentlich diskontinuierliche, kobeschränkte Wirkung durch Isometrien.
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Geometrische Wirkungen sind genau die, auf die wir den Satz von Milnor-Švarc anwen-
den können!

Beispiel 3.3.15 (Geometrische Wirkungen). Die Folgenden Gruppenwirkungen sind
Beispiele geometrischer Wirkungen:

1. Die Translationswirkung von Z2 auf R2 ist geometrisch. Siehe dazu Abbildung 3.6.

2. Die Spiegelungsgruppe W in Iso(R2), die durch Spiegelungen am Aufspann der drei
Seiten eines gleichseitigen Dreiecks erzeugt wird ist geometrisch. Sie entspricht der
Coxetergruppe W = ⟨s1, s2, s3 | (sjsj)3 für alle i, j⟩.

3. Die Linkstranslationswirkung einer von S endliche erzeugten Gruppe G auf jedem
ihrer Cayleygraphen
Cay(G,S) oder

#               —

Cay(G,S) ist ebenfalls eine geometrische Wirkung.

Wir können den Satz von Milnor-Švarc auf diese Beispiele anwenden und erhalten die
quasi-Isometrien Z2 ∼q.i. R2 und W ∼q.i. R2. Aus dem 3. Beispiel ergibt sich, dass die
freie Gruppe Fk mit k Erzeugern quasi-isometrisch zu einem 2k-regulären Baum ist.
Beispiel einer nicht-geometrischen Wirkung ist die Rotationswirkung von SO(2) auf

R2. Diese Wirkung ist nicht eigentlich diskontinuierlich.

Abbildung 3.6: Translationswirkung von Z2 auf R2, mit markiertem Bereich S.B. Dabei
ist S durch lila Punkte markiert, der Ursprung (0, 0) ∈ S durch den
schwarzen Punkt und B′ = B = [0, 1] × [0, 1] ⊂ B.S durch die etwas
dunklere Fläche.

Wir betrachten nun eine topologische Variante des Milnor-Švarc Lemmas. Dazu benö-
tigen wir folgendes Lemma, dessen Beweis wir als Übungsaufgabe stellen. Siehe Übungs-
aufgabe 6.3.4.
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Lemma 3.3.16 (Metrik für Quotientenräume). Sei (X, d) ein eigentlicher metri-
scher Raum. Sei α : G→ Iso(X) eine Wirkung von G auf X.
Sei weiter p : X → G

∖
X die natürliche Projektion auf den Quotienten. Setze

d̄(x̄, ȳ) := inf{d(x, y) | p(x) = x̄ und p(y) = ȳ}

für x̄, ȳ ∈ G
∖
X . Dann gilt:

1. Das Infimum ist ein Minimum: Es existieren x, y ∈ X mit d̄(x̄, ȳ) = d(x, y),
sodass p(x) = x̄ und p(y) = ȳ gilt.

2. Die Abbildung d̄ ist eine Metrik auf G
∖
X .

Definition 3.3.17 (kokompakte Wirkung). Eine Wirkung G ↷ X auf einem
topologischen Raum X heißt kokompakt, wenn der Quotient der Wirkung G

∖
X

kompakt ist bezüglich der Quotiententopologie.

Beispiel 3.3.18 (kokompakte Wirkungen). Wir betrachten einige (Nicht-)Beispiele ko-
kompakter Wirkungen.

1. Sei X kompakt und wegzusammenhängend sowie X̃ die universelle Überlagerung
von X. Dann ist die Gruppenwirkung π1(X) ↷ X̃ durch Decktransformationen
eine kokompakte (und eigentliche) Wirkung. Es ist π1(X)

∖
X̃ ∼= X

2. Die Wirkung Z ↷ R2 durch Translation längs der x-Achse ist nicht kokompakt.
Der Quotientenraum entspricht einem unendlichen Zylinder und ist nicht kompakt.
Siehe dazu links in Abbildung 3.7.

3. Die Wirkung Z2 ↷ R2 durch Translation längs der x-Achse und der y-Achse ist
kokompakt. Der Quotientenraum Z2

∖
R2 ist ein flacher Torus. Siehe dazu Mitte

der Abbildung 3.7.

4. Die Wirkung G ↷ Cay(G,S) =: Γ ist kokompakt. Der Quotientenraum G
∖
Γ ist

eine Rose mit n = |S| Blättern. Siehe dazu rechts in Abbildung 3.7

Abbildung 3.7: Beispiele für Quotientenräume. Vergleiche Beispiel 3.3.18.
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Es gilt folgender Satz, der sich aus der bereits bewiesenen Variante und den gerade
eingeführten Definitionen ableiten lässt.

Theorem 3.3.19 (Topologischer Milnor-Švarc). Eine Gruppe G wirke eigentlich
diskontinuierlich, kokompakt und durch Isometrien auf einem eigentlichen, geodä-
tischen metrischen Raum X. Dann ist G endlich erzeugt und die Abbildung

G −→ X

g 7−→ g.x0

ist für alle x0 ∈ X eine quasi-Isometrie.

Beweis. Siehe Übungsaufgabe 6.3.5.

Wir sehen nun erste direkte Anwendungen dieses Satzes.

Korollar 3.3.20. Sei G endlich erzeugt und sei H ≤ G eine Untergruppe mit
[G : H] <∞. Dann ist H endlich erzeugt und G ∼q.i. H.

Beweis. Sei S ein endliches Erzeugendensystem von G. Dann wirkt H ↷ Cay(G,S)
isometrisch durch Linksmultiplikation. Diese Wirkung erfüllt die Voraussetzungen von
Theorem 3.3.9: Die Wirkung ist eigentlich diskontinuierlich, da G bereits so wirkt. Der
Index von H in G ist endlich, also gibt es ein endliches Vertretersystem B von H

∖
G ,

das insbesondere beschränkt ist. Also ist H ↷ Cay(G,S) kobeschränkt. Darüber hinaus
ist Cay(G,S) geodätisch. Mit Theorem 3.3.9 gilt also H ∼q.i. Cay(G,S) und es gilt
Cay(G,S) ∼q.i. G. Somit folgt H ∼q.i. G.

Korollar 3.3.21. Sei die Gruppe G endlich erzeugt und N eine endliche normale
Untergruppe von G. Dann ist G/N ∼q.i. G.

Beweis. Siehe Übungsaufgabe 6.3.6.

Bemerkung 3.3.22. Korollar 3.3.20 und 3.3.21 besagen, dass endliche Gruppen den quasi-
Isometrie-Typ einer Gruppe nicht beeinflussen. Wir sagen auch „G unterscheidet sich
von G′ durch eine endliche Gruppe“, wenn entweder G isomorph zu einer Untergruppen
von G′ von endlichem Index ist oder umgekehrt. In diesem Zusammenhang bedeuten
Korollar 3.3.20 und Korollar 3.3.21: Unterscheiden sich G und G′ um eine endliche
Gruppe, so ist G ∼q.i. G

′.

Beispiel 3.3.23. Hier ein paar Beispiele für quasi-Isometrien:

1. Jede endliche Gruppe ist quasi-isometrisch zur trivialen Gruppe.
Diese Behauptung folgt mit der Beobachtung, dass Räume mit endlichem Durch-
messer zum Ein-Punkt-Raum isometrisch sind.
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2. Die Gruppe D∞ ist quasi-isometrisch zu Z.
Weil D∞ eine Untergruppe von Index 2 hat, die zu Z isomorph ist, folgt die Be-
hauptung mit Korollar 3.3.20. Alternativ betrachte die Gruppenwirkung D∞ ↷ R,
die durch Spiegelungen am Ursprung und am Punkt 1 erzeugt wird. Diese Wirkung
ist kokompakt, eigentlich diskontinuierlich und via Isometrien. Milnor-Švarc liefert
dann die Behauptung.

3. Für alle k ≥ 2 ist Fk quasi-isometrisch zu F2.
Um das einzusehen konstruiere die explizite quasi-Isometrie der zugehörigen Cay-
leygraphen zu freien Erzeugendensystemen, d.h. zwischen den regulären Bäumen
T2k mit je 2k Kanten an jeder Ecken und dem Cayleygraphen T4 der freien Gruppe
mit zwei Erzeugern. Oder betrachte die endliche Überlagerung von einer Rose Rk

mit k Blättern auf eine Rose R2 mit 2 Blättern. Dann gilt, dass π1(Rk) = Fk ist
eine Untergruppe von π1(R2) = F2 ist, gegeben durch die von der Überlagerung
induzierte Einbettung.

3.4 Quasi-Isometrie-Invarianten

Nachdem wir im letzten Abschnitt die quasi-Isometrie kennengelernt haben, wollen wir
uns in diesem Abschnitt Eigenschaften quasi-isometrischer Gruppen und Räume wid-
men. Es stellt sich zunächst die Frage, welche Eigenschaften zwei (endlich erzeugte)
quasi-isometrische Gruppen gemeinsam haben bzw. welche Eigenschaften unter einer
quasi-Isometrie übertragen werden. Das führt uns zum Begriff der q.i.-Invariante.

Definition 3.4.1 (q.i.-Invariante). Sei V eine Menge von Objekten einer Katego-
rie. Eine q.i.-Invariante mit Werten in V ist eine Abbildung

I : {endlich erzeugte Gruppen} → V,

sodass I(G) = I(H) für alle endlich erzeugten Gruppen G,H mit G ∼q.i. H .

Solche Invarianten sind hilfreich, um zu zeigen, dass zwei Gruppen nicht quasi-isometrisch
sind. Im Allgemeinen sind sie jedoch wenig hilfreich, um zu zeigen, dass zwei Grup-
pen tatsächlich quasi-isometrisch sind. Im Allgemeinen impliziert I(G) = I(H) nämlich
nicht, dass G ∼q.i. H gilt.

Beispiel 3.4.2 (Eine erste q.i.-Invariante). Wir betrachten hier erste elementare Bei-
spiele für q.-i.-Invarianten. Sei V = {0, 1}. Dann ist die Abbildung

I(G) =

{
0 G endlich
1 G unendlich

eine QI-Invariante.
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Es gibt kaum Invarianten, die auf der ganzen Familie endlich erzeugter Gruppen de-
finierbar sind. Daher schränkt man sich oft auf eine (leicht definierbare) Teilklasse von
Gruppen ein. So auch im nächsten Beispiel in dem wir auch ein nicht-Beispiel betrachten.

Beispiel 3.4.3 (nicht-Beispiel einer q.i.-Invariante für freie Gruppen ). Sei V = N und
auf der Menge aller endlich erzeugten, freien Gruppen sei die Abbildung I(F ) = rang(F )
definiert. Dann ist I keine QI-Invariante.

Manchmal ist folgende Formulierung für q.i.-Invarianten leichter zu greifen:

Definition 3.4.4 (Geometrische Eigenschaft). Eine Eigenschaft P von endlich
erzeugten Gruppen heißt geometrisch, wenn gilt: Für eine Gruppe G mit der Ei-
genschaft P und eine Gruppe H mit G ∼q.i. H folgt immer, dass auch H die
Eigenschaft P erfüllt.

Bemerkung 3.4.5. Die Begriffe einer q.i.-Invariante und einer geometrischen Eigenschaft
entsprechen einander. Für eine geometrische Eigenschaft P , wähle V := {0, 1} und
definiere

I(G) :=

{
0 G hat Eigenschaft P
1 G hat P nicht.

Dann ist I eine q.i.-Invariante.
Für eine q.i.-Invariante I sage, dass eine endlich erzeugte Gruppe G genau dann die Ei-

genschaft Pv erfüllt, wenn I(G) = v ∈ V gilt. Dann ist P eine geometrische Eigenschaft.
Daher sagt man manchmal, dass eine Eigenschaft P invariant unter quasi-Isometrien

oder eine q.i.-Invariante ist, wenn sie geometrisch ist.

Beispiel 3.4.6. Für einige Eigenschaften wissen wir bereits, dass sie geometrisch sind.

1. Für alle n ∈ N ist die Eigenschaft, virtuell (insb. isomorph zu) Zn zu sein, eine
geometrische Eigenschaft.

2. Endlich zu sein ist geometrisch.

3. Abelsch zu sein ist nicht geometrisch. Es gibt zum Beispiel sowohl endliche Grup-
pen die abelsch sind als auch solche die nicht abelsch sind. Der Beweis für unend-
liche Gruppen ist sehr schwer.

4. (Virtuell) frei und endlich erzeugt zu sein ist geometrisch.

5. Weitere geometrische Eigenschaften: Hyperbolizität, (manche) Ränder von Grup-
pen, Enden, Gruppenwachstum.

Unser nächstes Ziel ist es zu beweisen, dass auch endlich präsentiert zu sein geometrisch
ist. Dazu brauchen wir einen Raum, auf dem die Gruppen wirken und der uns die endliche
Präsentierung auch kodiert.
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Definition 3.4.7 (Cayley-2-Komplex). Sei G endlich präsentiert, das heißt
G = ⟨S | R⟩ mit S und R endlich.
Konstruiere den Cayley-2-Komplex K̃(S,R) =: K̃ wie folgt:

1. Für alle Relationen r ∈ R mit l(r) = n betrachte ein reguläres n-gon
(Kantenlänge 1) mit ausgezeichneter Startecke und gerichteten, beschrifteten
Kanten, die dem Wort r entsprechen, wenn man sie im Uhrzeigersinn ab-
liest.Hierbei entspricht die Inversenbildung der Umkehrung der Orientierung
einer Kante. Dazu betrachte Abbildung 3.8b. Für Beispielpolygone betrachte
Abbildung 3.8a.

2. Betrachte den gerichteten(!) Cayleygraphen
#               —

Cay(G,S) und klebe an jede
Ecke, an der ein gerichteter, mit r beschrifteter Zykel startet, eine der oben
beschriebenen Zellen an.

An jeder Ecke (also für jedes g ∈ G) wird eine Zelle pro Wort r ∈ R eingeklebt!

(a) Zellen für die Relationen aba−1b−1

und abca−1b−1c−1 mit ausgezeichneter
Startecke.

(b) Inverse Elemente entsprechen umge-
kehrter Orientierung.

Abbildung 3.8: Zur Konstruktion des Cayley-2-Komplexes.

Beispiel 3.4.8. Wir betrachten den Cayley-2-Komplex für erste Gruppen.

1. Sei G = Z2 = ⟨S | R⟩ mit Erzeugern S := {a =
(
1
0

)
, b =

(
0
1

)
} und Relationen

R = {r = aba−1b−1}. Dann entspricht K̃(G,R) der Parkettierung der Ebene mit
Quadraten. Siehe Abbildung 3.9.

Abbildung 3.9: Der Cayley-2-Komplex von Z2.

Der Cayleygraph formt ein Gitternetz und jede der Zellen hat die Form eines Qua-
drats. Die Beschriftung der Kanten und die Wahl der Startecke ist dabei nicht
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eindeutig. Vergleiche hierzu Abbildung 3.10. Dort sieht man welche Quadrate ein-
ander entsprechen, wenn wir die definierende Relation abändern (was dann einer
Änderung der Startecke entspricht).

Abbildung 3.10: Zellen des Cayley-2-Komplexes von Z2, für die Relation aba−1b−1.

2. Sei G = ⟨S | R⟩ mit S = {a} und R = {a2}. Der orientierte Cayleygraph besteht
aus zwei Ecken und zwei entgegengesetzt orientierten Kanten zwischen ihnen.

Nun wird eine Zelle in Form eines 2-gons, bzw. in der Form einer D2 zwei Mal
angeklebt. Einmal an der Ecke 1 und einmal an der Ecke a. Der Cayley-2- Komplex
K̃ = K̃(S,R) ≃ S2 ist dann topologisch eine 2-Sphäre. Siehe dazu Abbildung 3.11.
Hier ist G = π1(RP 2) und K̃ ist die universelle Überlagerung von RP 2.

Abbildung 3.11: Der Cayley-2-Komplex von ⟨a | a2⟩, isomorph zu S2.

Definition 3.4.9 (Präsentationskomplex K := K(S,R)). Sei G = ⟨S | R⟩ eine
endlich präsentierte Gruppe. Definiere einen Raum (CW-Komplex) K := K(S,R)
wie folgt:

1. Der Raum K enthält eine Ecke v (0-Zelle).

2. Für alle s ∈ S klebe eine orientierte und mit s beschriftete Kante es der
Länge 1 mit beiden Enden an v (1-Zellen).

3. Für jedes Wort r = s1 · · · sl(r) ∈ R klebe eine Zelle Dr (ein l(r)-gon mit
beschrifteten Kanten wie in Definition 3.4.7) an die Kanten beschriftungs-
und orientierungserhaltend an (2-Zellen).

Klebe eine Kante si an die Kante es orientierungserhaltend an, wenn si ∈ S
gilt und orientierungsumkehrend, wenn s−1

i ∈ S und si /∈ S gilt.
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Beispiel 3.4.10. Wir betrachten einige Beispiele für Cayley-2-Komplexe und Präsen-
tationskomplexe:

1. Sei G = Z2 ∼= ⟨a, b | aba−1b−1⟩. Dann wird K wie in Abbildung 3.12 gebaut.

Abbildung 3.12: Bauplan für den Präsentationskomplex von G = Z2 ∼= ⟨a, b | aba−1b−1⟩,
durch ankleben von zwei Kanten ea und eb sowie einer 2-Zelle an eine
Ecke v.

2. Für die freie Gruppe FS mit Erzeugendensystem S gilt K̃(FS, S) =
#               —

Cay(FS, S)
und K ist eine Rose mit #S Blättern.

3. Es gilt ist K({a}, {a2}) ∼= RP 2, vergleiche Abbildung 3.13.

Abbildung 3.13: Bauplan für den Präsentationskomplex von ⟨a | a2⟩
.

Lemma 3.4.11 (Zusammenhang von K̃ und K). Sei G = ⟨S | R⟩ eine endlich
präsentierte Gruppe. Dann gilt:

1. Der Präsentationskomplex K ist Quotient des Cayley-2-Komplexes K̃, mo-
dulo der natürlichen G-Linkstranslationswirkung auf K̃. Das heißt, es gilt:

K = G

∖
K̃ .

2. Für jeden anderen Raum X mit einer lokal isometrischen Abbildung
φ : X ↠ K existiert eine lokale Isometrie ψ : K̃ ↠ X, sodass folgendes
Diagramm kommutiert:

K̃

X

K

pr

ψ

φ
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Beweis. Siehe Übungsaufgabe 6.3.8.

Der Cayley-2-Komplex K̃ ist also die universelle Überlagerung des Präsentationskom-
plexes K und es gilt π1(K) = G mit Satz von Seifert und van Kampen.

Lemma 3.4.12. Sei G von S endlich erzeugt und sei π : F (S) → G die natürliche
Projektion. Sei R ⊆ Ker(π). Sei X der Komplex, den man durch Ankleben von
2-Zellen Dr wie in Definition 3.4.7 aus

#               —

Cay(G,S) und r ∈ R enthält.
Dann gilt: X ist einfach zusammenhängend genau dann, wenn ⟨R⟩�G = Ker(π).

Beweisskizze. (siehe auch [BH99, S. 135]).
Der Cayleygraph

#               —

Cay(G,S) ist isomorph zum Quotienten

Ker(π)

∖ #               —

Cay(F (S), S) ,

wobei
#               —

Cay(F (S), S) ein Baum ist. Es folgt π1(
#               —

Cay(G,S)) ∼= N := Ker(π) und ein Wort in
S ∪ S−1 ist in N genau dann, wenn es der Beschriftung eines Zykels in

#               —

Cay(G,S) ent-
spricht, der in 1 beginnt und endet.
Sei u ∈ F (S) ein reduziertes Wort und vu eine Ecke in

#               —

Cay(G,S), in der der eindeutige
Pfad mit Label u endet, der in 1 startet.
Klebe startend in vu eine Scheibe (ein n-gon) an, deren Randkanten mit r beschriftet

sind. Dann gilt:
π1(resultierender 2-Komplex) = N

/
⟨u−1ru⟩ .

Allgemein gilt für den Komplex X, also
#               —

Cay(G,S), verklebt mit 2-Zellen Dr für alle
r ∈ R an allen u ∈ G, mit Seifert van Kampen:

π1(X) = N
/
⟨R⟩�G .

Insbesondere ist der Komplex X einfach zusammenhängend genau dann, wenn
⟨R⟩�G = N gilt.

Theorem 3.4.13 (Endlich präsentiert zu sein ist geometrisch). Sei G eine end-
lich erzeugte Gruppe mit Erzeugendensystem S und Relationen R, sodass auch
|R| <∞ gilt. Sei H von S ′ endlich erzeugt und H ∼q.i. G.
Dann ist H endlich präsentiert und es existiert eine endliche Menge an Relationen
R′, sodass H ∼= ⟨S ′ | R′⟩.

Beweis. Setze G1 := G, G2 := H, S1 := S, S2 := S ′ und Γi :=
#               —

Cay(Gi, Si). Sei ρ die
Länge des längsten Wortes in R. Wir wissen, dass der Cayley-2-Komplex K̃1 von G1

einfach zusammenhängend ist.
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fl

ϕ

f QI in den Räumen
D2 Γ2

Γ1

fl

ϕ
f QI

Abbildung 3.14: Relation zwischen fl, f und ϕ.

Es ist G1 ∼q.i. G2 und somit existieren (C,D)-quasi-Isometrien f und f ′ mit

Γ1 Γ2,

f

f ′

die für gewisse C,D quasi-invers sind.
Sei weiter µ > 0 so gewählt, dass d(f ′(f(v)), v) ≤ µ für alle v ∈ Γ2 (möglich weil f, f ′

quasi-Inverse) gilt.
Setze m := max{ρ, µ, C,D} und M := 3 · (3m2+5m+1). Konstruiere einen 2-Komplex

K′
2 aus Γ2 durch Ankleben einer 2-Zelle an jeden reduzierten (!) Kreis der Länge kleiner

gleich m in Γ2. Achtung: Der Komplex K′
2 ist kein Präsentationskomplex, da wir noch

nicht wissen, dass G2 endlich präsentiert ist.
Sei jetzt l ein Kantenkreis in Γ2, das heißt l = (g1, . . . , gn, g1) mit gi ∈ G2 für alle
i. Betrachte die stetige Abbildung fl : ∂D2 → Γ2, wobei D2 eine Kreisscheibe mit
simplizialem Rand mit n Kanten und fl(∂D2) = l ist.
Mit Lemma 3.4.12 folgt dann, dass G2 endlich präsentiert ist, wenn wir zeigen kön-

nen, dass fl eine stetige Fortsetzung f̂l : D2 → K′
2 besitzt, das heißt wenn K′

2 einfach
zusammenhängend ist.
Um dies zu zeigen, seien vi die Urbilder von gi unter fl. Sei nun ϕ : ∂D2 → Γ1 eine

Abbildung, die vi auf f(gi) ∈ Γ1 und die Kante {vi, vi+1} auf eine Geodätische von
f(gi) nach f(gi+1) schickt (Indizes modulo n). Weil K̃1 einfach zusammenhängend ist,
erweitert ϕ stetig auf eine Abbildung ϕ̂ : D2 → K̃1. Die Zusammenhänge werden in
Abbildung 3.14 illustriert.
Wir werden jetzt mithilfe von K̃1 die Schreibe D2 triangulieren und damit deine Erwei-

terung f̂l von fl definieren.
1. Schritt: Für alle x ∈ D2 definiere Elemente hx ∈ G1 = V (Γ1) = G wie folgt:

1. Ist ϕ̂(x) eine Ecke, so setze hx = ϕ̂(x). Insbesondere gilt hvi = f(gi) für alle i.

2. Ist ϕ̂(x) in einer offenen Kante bzw. einer 2-Zelle enthalten, so wähle eine (belie-
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bige) Ecke der Kante bzw. Zelle als hx.

Da die Abbildung ϕ̂ stetig ist, gilt dann d(hx, hy) ≤ ρ für alle Punkte x, y, die nah genug
sind in D2. Weiter ist d(ϕ(x), hX) ≤ 1

2
für alle x ∈ ∂D2 (weil Kanten in ∂D2 alle Länge

1 haben).
2. Schritt: Trianguliere D2 nun so, dass alle Ecken vi in ∂D2 Ecken der Triangulierung
T sind und so, dass für alle benachbarten Ecken t, t′ von T gilt: d(ht, ht′) ≤ ρ.
3. Schritt: Setze f̂l|∂D2 := fl und f̂l(x) := f ′(hx) für alle x im Inneren von D2.
Behauptung: Für alle benachbarten Ecken t, t′ der Triangulierung T gilt

dΓ2(t, t
′) ≤ M

3
.

Ist die Behauptung wahr, so können wir f̂l stetig auf D2 erweitern, indem wir Kanten
von T auf Geodäten in Γ2 schicken und einsehen, dass (nach Konstruktion) Kreise der
Länge kleiner als M eine 2-Zelle in K′

2 beranden. Das impliziert, dass f̂l stetig auf die
Dreiecke in T von D2 erweitert werden kann. Es ist also noch die Behauptung zu zeigen.

Es muss lediglich die Ecke t in
◦
D2 := D2 \ ∂D2 betrachtet werden und t′ ∈ ∂D2.

Sei t′ zwischen vi und vi+1. Dann gilt mit der Dreiecksungleichung und da f ′ eine
(C,D)-quasi-Isometrie ist:

d(f̂l(t), f̂l(t
′)) = d(f ′(ht), fl(t

′))

≤ d(f ′(ht), f
′(ht′))

+ d(f ′(ht′), f
′(ϕ(t′))) + d(f ′(ϕ(t′)), f ′(ϕ(vi)))

+ d(f ′(ϕ(vi)), fl(vi)) + d(fl(vi), fl(t
′))

≤ (C · ρ+D) + (C · 1
2
+D) + [C · d(ϕ(vi), ϕ(vi+1)) +D]

+ d(f ′(f(gi)︸ ︷︷ ︸
=ϕ(vi)

), gi) + 1

≤ (Cρ+D) + (
C

2
+D) + (C · (C +D) +D) + µ+ 1

≤ 3m2 + 5m+ 1 ≤ M

3
.

Wir werden in den nächsten Wochen noch einige weitere Beispiele für QI-Invarianten
kennen lernen:

• Hyperbolizität

• Ende von Räumen/Gruppen

• Gruppenwachstum
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