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Vorlesungsskript mit Ubungen fiir ca 28 Vorlesungen 4 90 Minuten.

Es wird keine Algebraische Topologie vorausgesetzt. Daher ist an einigen Stellen ein
anderer Beweis oder eine leicht umstandlichere Formulierung gewahlt als es mit der
Sprache von Fundamentalgruppen und Uberlagerungen moglich wire.

Danke an Marco Lotz, der die erste Version dieses Skriptes getippt hat. Danke an Pau-
la Conrad fiirs Uberarbeiten und ganz viel Detailarbeit. Danke an Marco Lotz, Jose
Quintanilha, Yuri Santos Rego und Anna Schilling fiir zahlreiche Ubungsaufgaben.

Kommentare und Hinweise gerne an schwer@uni-heidelberg.de schicken. Danke.
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3 Cayleygraphen und
Quasi-lsometrie

Caylegraphen sind Graphen, die einem Paar (G, S) zugeordnet werden, wobei G eine
Gruppe und S ein Erzeugendensystem ist. Ein Cayleygraph enthélt je eine Ecke pro
Gruppenelement, die mit Kanten verbunden sind, wenn sich die entsprechenden Grup-
penelemente genau durch rechts-Multiplikation mit einem Erzeuger unterscheiden. Die
Betrachtung von Cayleygraphen als geometrisches Bild einer Gruppe geht auf Max Dehn
zuriick. Im Allgemeinen sind Cayleygraphen zu verschiedenen Erzeugendensystemen der
selben Gruppe nicht isomorph zueinander. Mann kann sie dennoch als geometrische Ver-
sion der Gruppe betrachten, da sie in einem groben Sinn - ndmlich bis auf quasi-Isometrie
- eindeutig sind. Der Satz von Milnor und Svarc (Theorem erweitert diese geo-
metrische Betrachtungsweise fiir Gruppen um weitere beliebige geodétische metrische
Réume, auf denen die Gruppen geeignet wirken und bildet damit den Grundstein fiir
viele weitere Methoden der geometrischen Gruppentheorie.

3.1 Metrische Graphen und geodatische metrische
Raume

Cayleygraphen haben wir bereits in Definition eingefiihrt. Ziel dieses Kapitels ist
es, Cayleygraphen als metrische Rdume zu betrachten und deren Eigenschaften genauer
zu untersuchen. Insbesondere wollen wir verstehen, welche Eigenschaften einer Gruppe
genau in ihren Cayleygraphen kodiert sind und in welchem Sinne alle Cayleygraphen
einander entsprechen.

Definition 3.1.1 (Léngen von Kurven). Sei (X, d) metrischer Raum und sei « :
[0,1] — X stetig, also eine Kurve in X. Dann ist die Ldnge von « gegeben durch

Das Supremum wird hier iiber alle Zerlegungen des Intervalls [0, 1] gebildet, d.h.
iiber alle Wahlen von ¢, mit 0 =t < 21 < ... < t,_1 < t, = 1 fiir beliebige n € N.

7

Insbesondere gilt fiir alle Kurven «, dass [(a) > d(«(0), «(1)) ist. Fiir die Verkettung
ax* 3 zweier Pfade o, 5 : [0,1] — X mit o(1) = £(0) gilt aufserdem I(ax 5) = I(a) +1(5).



Die obige Formel zur Léngenberechnung koénnen wir nutzen, um in der metrischen
Realisierung eines Graphen eine Abstandsfunktion zu definieren.

7

Definition 3.1.2 (Metrische Realisierung eines Graphen). Wir kénnen einen Gra-
phen I' = (V] E, ) metrisch realisieren, d.h. einen metrischen Raum definieren,
dessen unterliegende kombinatorische Struktur gerade der gegebene Graph ist.
Dazu versehen wir zunéchst jede Kante e mit einem Label, d.h. wir ordnen der
Kante eine positive Zahl [(e) zu, die wir Linge der Kante nennen.

Identifiziere jedes Ende einer Kante e mit je einem Ende des Intervalls [0, [(e)].
Sind die Kanten in I' orientiert, so identifizieren wir immer die Quelle der Kante
mit 0 und die Senke der Kante mit [(e).

Die metrische Realisierung |I'| von T ist folgender metrischer (Quotienten-)Raum:
Als Menge ist die metrische Realisierung gegeben durch

T = J[0,1(e)]/~,

eckE

wobei wir die Endpunkte zweier Intervalle genau dann miteinander identifizieren,
wenn die zugehorigen Ecken in I' identisch sind.
Definiere eine Abstandfunktion d : |T'| x |I'| = R>( wie folgt:

d(z,y) = inf I(v)

VXY

wobei das Infimum tiber alle stetigen Pfade v : [0,1] — |['| von z nach y gewéhlt
ist, deren Lange durch die Formel in Definition [3.1.1 berechnet wird. Dabei withlen
wir die Zerlegungen so, dass die Teilabschnitte der Kurve jeweils in einem Intervall
enthalten sind.

\.

Definition 3.1.3 (Geodétische und geodéatischer Raum). Sei (X, d) ein metrischer
Raum. Sei v : [0,1] — X ein Pfad in X.

1. Der Pfad v ist eine Geoddtische in X, wenn gilt: I(y) = d(v(0),~(1)).

2. Der Pfad v ist eine lokale Geodditische, wenn fiir alle ¢ € [0,1] ein € > 0
existiert fiir das v[f—c sy eine Geodatische ist.

3. Ein metrischer Raum X heifst geoddtisch, wenn fiir alle Paare x,y € X eine
Geodétische von x nach y existiert, d.h. eine Geodétische o mit «(0) = =z,

a(l) =y.

7

Beispiele fiir geodatische metrische Raume sind metrische Realisierungen von Graphen,
der euklidische Raum oder allgemeiner glatte, Riemannsche Mannigfaltigkeiten.

Beispiel 3.1.4. Nicht jeder metrische Raum ist geodétisch. Betrachte zum Beispiel als
metrischen Raum X die Menge R? ohne den Ursprung mit eingeschrinkter euklidischer
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Metrik. Dann ist X selbstverstdndlich ein metrischer Raum, der aber nicht geodétisch
ist. Fiir beliebige Paare von Punkten x,y, die auf verschiedenen Seiten des Ursprungs
auf einer Ursprungsgeraden liegen, gibt es keine verbindende Geodétische.

Auch miissen Geodétische in metrischen Rdumen nicht eindeutig sein. Es kann pas-
sieren, dass es zwischen zwei Punkten viele, moglicherweise sogar unendlich viele Geo-
diitische gibt. Als Beispiel betrachte die in R? eingebettete 2-Sphire mit der iiblichen
intrinsischen Metrik. Dann gibt es zwischen Nord- und Siidpol unendlich viele Geodéati-
sche, die entlang der Léngengrade verlaufen.

Definition 3.1.5 (Metrisch realisierte Cayleygraphen). Die metrische Realisie-
rung eines Cayleygraphen Cay(G, S) ist die metrische Realisierung von Cay(G, S)
wie in Definition mit Kantenlénge [(e) = 1 fiir alle Kanten e.

Bemerkung 3.1.6. Analog zu Definition erhalten wir auch eine Metrik auf |C_ay>(G, S)|
(durch Ignorieren der Orientierung), sowie eine Metrik auf G, also den Ecken des Cay-
leygraphen, durch Einschranken der Metrik.

Definition 3.1.7 (Wortmetrik). Fiir zwei Elemente g,h € G definieren wir die
Wortmetrik

ds(g,h) == min{n | es ex. s51,...,8, € Smit g 'h =s1...8,}.

Lemma 3.1.8. Fir G erzeugt von S und alle g,h € G gilt:
1. Fir die Wortmetrik gilt ds(g, h) = 0 genau dann, wenn g = h ist.

2. Die Wortmetrik aus Definition [3.1.7 stimmt mit der eingeschrinkten Me-
trik der geometrischen Realisierung des Cayleygraphen aus Definition |3.1.
tiberein.

Beweis. Siehe Ubungsaufgabe Ubungsaufgabe [6.3.1] m

Lemma 3.1.9 (Eigenschaft der Linkstranslation). Sei G eine durch S endlich
erzeugte Gruppe. Dann ist die Linkstranslationswirkung von G auf |Cay(G,S)|
und |Cay(G, S)| eine Wirkung durch Isometrien.

Beweis. Fixiere ein Erzeugendensystem S. Definiere fiir alle g € G einen Automorphis-
mus ¢, auf dem metrisch realisierten Cayleygraphen durch ¢,(z) := gx fiir alle Ecken
x € G. Fir Punkte = auf einer metrisch realisierten Kante {hy, ho = hys} definiere ¢, (z)
als den eindeutigen Punkt 2’ auf der Kante {ghy, gho}, fiir den gilt d(ghy,2") = d(hq, x).
Man kann nachrechnen, dass die so definierten Abbildungen ¢, fiir alle g € G Isometrien
des metrisch realisierten Cayleygraphens sind. Insbesondere gilt ¢, o ¢, = @gp. O]
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Lemma 3.1.10 (Eigenschaften von |Cay(G,S)|). Fir jede Gruppe G mit endli-
chem Erzeugendensystem S gilt:

1. Sowohl der orientierte als auch der unorientierte Calyey Graph ist eigent-
lich bzgl. der Wortmetrik dg, d.h. abgeschlossene Bdlle sind kompakt. Die
geometrischen Realisierungen sind ebenfalls eigentlich.

2. Der metrische Raum |Cay(G, S)| ist geoddtisch.

Beweis. Die erste Eigenschaft folgt aus der Tatsache, dass jeder Ball von endlichem,
ganzzahligem Radius die Vereinigung endlich vieler Kanten ist. Ebenso lasst sich jeder
andere Ball mit endlichem Radius durch endlich viele Kanten iiberdecken.

Um 2. zu zeigen gehen wir wie folgt vor. Die Einschriankung der Metrik der metrischen
Realisierung auf die Ecken des Cayleygraphen entspricht der Wortmetrik dg. Somit ist
der Abstand zweier Ecken ¢, h € G gerade die Wortlinge von g~'h. Jedes kiirzeste Wort
fiir g~'h definiert somit einen Kantenzug, der eine Geodétischen g ~ g entspricht. Somit
haben wir bereits Geodétische fiir beliebige Paare von Ecken konstruiert.

Sind z,y Punkt auf einer selben Kante, so existiert eine Geodétische von x nach y
innerhalb dieser Kante.

Es bleibt noch der Fall zu betrachten, dass zwei Punkte z,y € |Cay(G, S)| gegeben sind,
die nicht beide Ecken sind und nicht beide in einer Kante liegen. In diesem Fall wahle
g und h so, dass sowohl d(z, g) als auch d(y, h) < 1 ist, und d(z, g) + ds(g, h) + d(h,y)
kleinstmoglich ist. Fiir die so gewdhlten Ecken g und h gilt d(x,y) = d(x, g) +ds(g, h) +

d(h, y).
Man priife leicht nach, dass dann die Verkettung der drei Geodétischen x ~» g, g ~» h
und h ~ y ebenfalls eine Geodatische von x nach y liefert. O]

Mit den bisherigen Betrachtungen dieses Kapitels wissen wir nun, dass jede endlich
erzeugte Gruppe auf eigentlichen, geodétischen Rdumen (némlich der metrischen Rea-
lisierung ihrer Cayleygraphen) wirkt. Das mag erst einmal richtig gut klingen und wird
in der Tat auch noch sehr niitzlich sein. Aber Achtung: ohne weitere Annahmen an die
Wirkung bzw. den Raum ist das nicht besonders hilfreich, da jede beliebige Gruppe
(trivial) auf dem Ein-Punkt-Raum wirkt, der die selben Eigenschaften besitzt.

Im Gegensatz dazu hat die Wirkung auf den Cayleygraphen gute Eigenschaften, die
dann weitreichende Konsequenzen haben.

Definition 3.1.11 (Eigentlich diskontinuierliche Wirkungen). Eine Wirkung einer
Gruppe G auf einem metrischen Raum (X, d) heifst eigentlich diskontinuierlich,
falls fiir alle Balle B C X gilt

{g e G| BNg.B+# @} < 0.

7

Das heifst: fiir alle x € X und alle Bélle B C X ist nur fiir endlich viele g € G der
Punkt g.z ebenfalls in B.
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Lemma 3.1.12 (Eigenschaften eigentlich diskontinuierlicher Wirkungen). Fine
Gruppe G wirke eigentlich diskontinuierlich auf einem metrischen Raum (X, d).
Dann gilt:

1. Punktstabilisatoren sind endlich, d.h. fir alle x € X ist der Stabilisator
G, ={g9 € G| g.x =z} eine endliche Menge.

2. Orbiten der G-Wirkung auf X haben keine Haufungspunkte als Teilmengen
von X.

Beweis. Diese Eigenschaften folgen direkt aus Definition [3.1.11 m

Definition 3.1.13 (Kobeschrankte Wirkungen). Eine Wirkung einer Gruppe G
auf einem metrischen Raum (X, d) heilt kobeschrankt, wenn es einen Ball B C X
gibt mit G.B = X

Lemma 3.1.14 (Eigenschaften von G ~ Cay(G,S)). Sei G endlich erzeugte
Gruppe. Dann ist die Linkstranslationswirkung auf einem beliebigen Cayleygraphen
ergentlich diskontinuierlich und kobeschrankt.

Beweis. Wir zeigen zunéchst, dass die Linkstranslationswirkung eigentlich diskontinu-
ierlich ist. Sei v eine Ecke in I' := Cay(G, S). Dann ist G.v = V(I'). Es ist klar, dass
jeder Ball mit endlichem Radius um v nur endlich viele andere Ecken enthélt. Da die
Wirkung frei ist folgt daraus bereits die Behauptung.

Fiir die Kobeschrénktheit betrachte als geeignetes B einen Ball mit Radius 1 um eine
beliebige Ecke. ]

Wir lernen jetzt eine erste Anwendung dieser schonen Wirkungen auf guten metrischen
R&umen kennen. Dabei nutzen wir folgende Sprechweise:

Definition 3.1.15 (Virtuell P). Eine Gruppe G hat wvirtuell die Eigenschaft P,
wenn die Gruppe G eine Untergruppe H von endlichem Index in G besitzt, die
die Eigenschaft P besitzt.

Hat G virtuell P so muss G selbst nicht unbedingt die Eigenschaft P haben.

Theorem 3.1.16 (Virtuell-Z Gruppen). Ist G endlich erzeugt und wirkt eigentlich
diskontinuierlich und kobeschrankt durch Isometrien auf R, so ist G virtuell Z, d.h.
G besitzt eine Untergruppe von endlichem Index, die zu 7 isomorph ist.

Beweis. Bezeichne mit ¥ : G — Iso(R) die Wirkung von G auf R. Der Raum R ist ge-
ordnet und jeder Isomorphismus von R ist entweder ordnungserhaltend (alle Translatio-
nen) oder ordnungsumkehrend (beispielsweise Spiegelungen). Das erlaubt uns, folgenden
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Homomorphismus zu betrachten:

Iso(R) = Zlog; ¢ 1 wenn ¢ d?e Ordnung um%ehrt
0 wenn ¢ die Ordnung erhélt .

Sei K der Kern dieses Homomorphismus. Dann ist G’ := U~1(K N ¥(G)) eine Unter-
gruppe von G und der Index von G’ in G ist hochstens 2. Jedes g € G’ wirkt durch
Translation auf R, weil es die Ordnung erhélt. Sei nun m das Infimum des positiven
Teils des Orbits der Null, d.h.

m = inf(G".0 N R.y).

Aus der Kobeschranktheit der Wirkung erhalten wir, dass G'.0 N Ry # @. Da die
Wirkung eigentlich diskontinuierlich ist, folgt aufserdem, dass das Infimum ein Minimum
sein muss, da kein Orbit Haufungspunkte hat. Also gilt insbesondere m > 0.

Betrachte jetzt die Abbildung

p:G —R: g— ¥(g)(0).

Dann ist ¢(G") € mZ. Wir zeigen, dass ¢ ein Homomorphismus ist. Sei fir g € G’ die
Zahl t, € R so gewahlt, dass fiir alle z € R gilt:

U(g)(z) =z +t,.

Ein solche Wahl fiir die ¢, ist moglich, da G" durch Translationen wirkt. Insbesondere
ist dann ¢(g) = ¥(g)(0) = t, und somit auch

tgn = p(gh)(0) = ©(g)(0) + @(h)(0) = t, + tp.

Weiter ist mit Lemma [3.1.12| die Menge F' := Ker(¢) = Stabe/(0) endlich, da die
Wirkung von G auf R eigentlich diskontinuierlich ist. Somit ist

1F =G 35mz27 -1

eine exakte Sequenz mit Schnitt s : mZ — G’ fiir den gilt ¢ o s = id. Das Bild s(mZ)
ist isomorph zu Z und hat in G’ endlichen Index. Weil G’ in G endlichen Index hat,
hat dann auch s(mZ) endlichen Index in G und liefert uns eine Untergruppe mit der
gesuchten Eigenschaft. O
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3.2 Cayleygraphen erkennen

Wir gehen jetzt der Frage nach, welche Graphen {iberhaupt als Cayleygraphen auftau-
chen konnen.

Definition 3.2.1 (Aquivalente Wirkungen). Zwei Wirkungen p; : G — Aut(X))
und py : G — Aut(Xs) heifen dquivalent, wenn ein Isomorphismus f : Aut(X;) —
Aut(X,) existiert, sodass fiir alle g € G und alle x; € X; gilt:

g-f(z:) = f(g.7:).

Wirkungen auf Graphen sind dquivalent, wenn sowohl die Ecken- als auch die
Kantenwirkungen équivalent sind im obigen Sinne.

Cayleygraphen kann man anhand ihrer Automorphismen wie folgt erkennen.

7~

Theorem 3.2.2 (Satz von Sabidussi). Sei ' ein schleifenfreier Graph und G eine
Gruppe. Dann gilt:

1. Eine Wirkung von G auf I' ist genau dann dquivalent zur Linkstranslati-
onswirkung von G auf Cay(G, S) fir ein (geeignetes) reduziertes Erzeugen-
densystem S von G, wenn die Eckenwirkung von G auf V(I') transitiv und
fixpunktfrei ist.

2. Der Graph T ist genau dann ein Cayleygraph einer Gruppe G beziiglich eines
reduzierten Erzeugendensystems S, wenn Aut(I') eine Untergruppe enthdlt,
die transitiv und fizpunktfrei auf V(I') wirkt.

Beweis. Teil 2 des Satzes lasst sich leicht aus dem ersten Teil ableiten, da die Links-
translationswirkung transitiv und fixpunktfrei auf den Ecken von I' wirkt.

Fiir 1. argumentiere wie folgt: Ist die Linkstranslationswirkung &quivalent zur G-
Wirkung, dann entspricht die Eckenwirkung gerade der Multiplikation in G und ist somit
transitiv und fixpunktfrei. Sei umgekehrt die Eckenwirkung transitiv und fixpunktfrei,
so argumentiere in mehreren Schritten wie folgt.

Schritt 1: Wir definieren ein Erzeugendensystem S. Wéhle dazu zunéchst eine feste
Ecke x in I' und setze

S :={g € G| Die Ecken g.z und z sind benachbart}.

Sei jetzt s € S. Dann ist nach Definition e = {x, sz} eine Kante in I. Da G durch
Automorphismen auf I' wirkt, ist aber auch s~'e = {s7 !z, z} eine Kante. Daraus folgt,
dass die Menge S abgeschlossen ist unter Inversenbildung.

Da die Eckenwirkung fixpunktfrei ist, gilt fiir ein s € S entweder, dass s™'z = sz und
damit s = s7' € S, oder es gilt s7'2 # sz und damit auch s~! # s und beide sind in S
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enthalten.

Definiere nun eine Menge S wie folgt: Fiir s = s7! in S sei s € S. Fiir s # s7!in S
wahle eines der beiden Elemente aus und sei dieses in .S. Wir kénnen die Wahl so treffen,
dass fiir alle benachbarten Ecken y von x gilt, dass y = sx fiir ein s in S ist.

Es bleibt noch zu zeigen, dass S die Gruppe G wirklich erzeugt]

Schritt 2: Wir definieren jetzt einen Morphismus von Graphen. Sei jetzt I := Cay(G, S)
(V', E'). Wir suchen einen Morphismus f : IV — I' = (V, E)). Sei = die oben fixierte Ecke.
Fiir h € G setze dazu f(h) := hx. Ist e = {hy, ho} eine Kante in I, so existiert (nach
Definition) ein s € S mit hy = hys. Dann ist f(hg) = hox = hysz und f(hy) = hyz und
{hy1sx,hix} = hy.e ist eine Kante, da fiir alle s € S die Ecken sz und = benachbart sind.
Somit ist f ein Morphismus von Graphen.

Schritt 3: Es bleibt noch zu zeigen, dass der Morphismus f aus Schritt 2 ein Isomor-
phismus ist. Die Abbildung f ist injektiv, da die Eckenwirkung py fixpunktfrei ist. Daher
gilt, dass aus gz = hax folgt, dass g~'hax = . Somit ist g~'h = 1. Die Abbildung f ist
aber auch surjektiv, da py transitiv ist und daher fiir alle y € V ein g € G existiert mit
gr =y. Es ist dann aber y = f(g).

Es ist noch zu zeigen, dass fiir jede Kante ¢ = {y1,y»} in ' auch f~'(e) eine Kante in
I ist. Siehe dazu Ubungsaufgabe m O

3.3 Quasi-lsometrie und das Milnor-Svarc Lemma

In diesem Kapitel untersuchen wir, inwieweit Cay(G, .S) von der Wahl eines Erzeugen-
densystems S abhéngt. Hintergrund dafiir ist, dass es einige relevante Eigenschaften von
Gruppen gibt, die unabhéngig von der Wahl eines Erzeugendensystems gelten. Meist
mochte man eine Gruppe GG unabhingig von der Wahl eines Erzeugendensystems be-
trachten.

Definition 3.3.1 (quasi-isometrische Einbettung). Seien X, Y metrische Rdume
und sei f : X — Y eine Abbildung. Weiter seien zwei reelle Konstanten C' > 1
und D > 0 gegeben. Dann ist f eine (C, D)-quasi-isometrische Einbettung, wenn
fiir alle z,y € X gilt:

1
oY) = D < d(f(2), f(y)) < Cd(z,y) + D.

Eine (C, D)-quasi-isometrische Einbettung f hat quasi-dichtes Bild in Y, wenn
fir alle y € Y ein z € X existiert mit d(f(z),y) < D.

Eine (C, D)-quasi-Isometrie ist eine eine (C, D)-quasi-isometrische Einbettung mit
quasi-dichtem Bild.

!Einen Beweis gibt es zum Beispiel hier: https://www.math.uni-hamburg.de/home/hamann/Lehre/
GeoGrTh/GeoGrTh.pdf siehe Satz 1.3.2. In der Vorlesung hatten wir den Beweis auch durchgefiihrt.
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Bemerkung 3.3.2. Wir sagen f ist eine quasi-isometrische FEinbettung, wenn es eine
(C, D)-quasi-Isometrie fiir eine geeignete Wahl von C' und D ist. Eine (C,0)- quasi-
isometrische Einbettung ist gerade eine Bilipschitz-Einbettung.

Beispiel 3.3.3. Die Inklusionsabbildungen von 2Z nach Z und Z nach R sind quasi-
isometrische Einbettungen (mit C' =1 und D = 0), aber keine bilipschitz-Aquivalenzen,
da sie nicht surjektiv sind. Vergleiche dazu Abbildung [3.1]

Ihllf_ ./-/‘ 1.\{' .:/" f\* __. —
....;t/i' : s s~ N7 g Q7L

Abbildung 3.1: Veranschaulichung der Einbettungen.

Definition 3.3.4 (quasi-Inverse). Sei f : X — Y eine Abbildung zwischen metri-
schen Rdumen. Dann ist g : Y — X eine quasi-Inverse von f, wenn es ein D > 0
gibt, sodass fiir alle x € X gilt:

dx((go f)(x),x) < D

und sodass fiir alle y € Y gilt:

dy((fog)(y),y) < D.

Beispiel 3.3.5. Die Wahl des grofsten Ganzen, d.h. die Abbildung
fR=Z:xw |z,
sowie die Abbildung

d
g: L —27:x— v v serade
r—1 x ungerade

sind beides quasi-isometrische Einbettungen mit C' = 1 = D. Die Abbildungen ¢ und f
sind quasi-Inverse der Inklusionsabbildungen von Z nach R beziehungsweise 27 nach Z.
Insbesondere haben fo: und cto f endlichen Abstand zur Identitétsabbildung id (ebenso
gotund ¢ o g). Siehe dazu die pinken Pfeile in Abbildung zur Veranschaulichung.

Wir zeigen jetzt ein paar elementare Eigenschaften von quasi-isometrischen Einbettun-
gen und quasi-Isometrien.
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Lemma 3.3.6 (Eigenschaften von quasi-Isometrien).

1. Die Verkettung quasi-isometrischer Einbettungen (von quasi-Isometrien) ist
wieder eine quasi-isometrische Einbettung (quasi-Isometrie).

2. Sei f eine quasi-isometrische Einbettung. Dann ist f eine quasi-Isometrie
genau dann, wenn es eine quasi-Inverse besitzt.

3. Quasi-isometrisch zu sein ist eine Aquivalenzrelation.

Insbesondere bildet die Menge aller quasi-Isometrien eines Raumes eine Gruppe.

Beweis. Beweis von 1: Seien f : X — Y und g : Y — Z quasi-isometrische Einbettungen
beziiglich (C, D). Dann gilt fiir alle z,y € X

d(g(f(2)),9(f(y))) < C-d(f(z), f(y)) + D
< C?-d(x,y) +C-D+D.

Umgekehrt gilt Folgendes: Fiir f, g zwei (C, D)-quasi-Isometrien, wihle z € Z. Es exis-
tieren also ein y € Y mit d(g(y),2) < D und ein x € X mit d(f(x),y) < D (wegen der
quasi-Dichtheit).

Somit ist

d((go f)(x),z) <d((go f)(x),9(y)) +d(9(y), 2)
<(CD+D)+D.

Also ist g o f eine quasi-isometrische Einbettung.

Fiir 2. siehe Ubungsaufgabe .

Teil 3 der Behauptung folgt aus den ersten beiden mit der zuséatzlichen Beobachtung
dass die Identitdtsabbildung eine quasi-Isometrie eines Raumes auf sich selbst ist. [

Jetzt kdnnen wir zeigen, dass sich zwei Cayleygraphen einer Gruppe G bis auf Quasi-
Isometrie iibereinstimmen.

Theorem 3.3.7 (Cayleygraphen sind quasi-isometrisch). Sei G eine Gruppe mit
endlichen Erzeugendensystemen S und S’. Dann erweitert id : G — G zu einer
quasi-Isometrie Cay(G, S) — Cay(G,S").

Beweis. Betrachte folgende Verkettung von Abbildung von Cay(G, S) nach Cay(G, S")

Cay (@, S) - (G, ds) -5 (G, dg) = Cay(G, '),
wobei W so gewéhlt ist, dass x € Cay(G, S) auf g € G abgebildet wird mit dg(z, g) <
Mit ¢ sei die Inklusionsabbildung bezeichnet. Beide Abbildungen ¥ und ¢ sind (1,1
quasi-Isometrien. Also ist W oid ot genau dann eine quasi-Isometrie, wenn id eine quasi-

)-
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Isometrie ist. Da id surjektiv ist, rechnen wir nach, dass idg eine (C,0)-quasi-Isometrie
ist. Setze dazu

c —maxdsf(]l s).
ses+

Es ist ¢ < oo, da S endlich ist. Seien g,h € G und n := dg(g,h). Dann existieren
s; € SUS™! sodass g7'h = s;---s,. Mit der Dreiecksungleichung und da df links-
invariant ist, folgt:

ds/(idc(g),idg(h)) = ds (g, h)
=ds/(g, 951 5n)
< ds(g, 981) + ds'(gsl g5152) + -+ dg(gs1- - Sp_1,951 - 5,)
=dg(1,s1) +dg(1,s2) + - +de(1,s,)
<n-C=C-ds(g,h).

Vertausche die Rollen von S und S’ und erhalte
ds(idc(g),ida(h)) < C - ds(g,h),

wobei C':= max{dg(1,s") | s € S'}. Setze nun Cy := max{C,C}. Dann ist idg eine
(Co, 0) quasi-Isometrie. O

Aus der Ferne sehen also alle Caylegraphen von G gleich aus.

Bemerkung 3.3.8. Theorem [3.3.7 ist im Allgemeinen falsch fiir unendliche Erzeugen-
densysteme: Betrachte zum Beispiel (Z, +) mit Erzeugendensystem Z \ {0}. Der Cay-
leygraph Cay(Z,Z \ {0}) hat dann endlichen Durchmesser, aber der Cayleygraph von
(Z,+) beziiglich dem Erzeugendensystem {1} hat unendlichen Durchmesser. Ein Raum
mit endlichem Durchmesser kann nicht zu einem Raum mit unendlichem Durchmesser
quasi-isometrisch sein.

Folgender Satz ist das fundamentale Theorem der geometrischen Gruppentheorie und
ein wesentlicher Grund dafiir, dass man sich fiir Gruppen bis auf quasi-Isometrie inter-
essiert.

Theorem 3.3.9 (Milnor—évarc—Lemma). Sei G eine Gruppe, die eigentlich dis-
kontinuierlich und kobeschrinkt auf einem geoddtischen metrischen Raum (X, d)
durch Isometrien wirkt. Dann gilt:

1. Die Gruppe G ist endlich erzeugt und

2. G ist quasi-isometrisch zu X.

Korollar 3.3.10. Seien G und X wie in Theorem [3.3.9 gegeben und sei S ein
endliches Erzeugendensystem fir G. Dann sind Cay(G,S) und Cay(G,S) quasi-
1sometrisch zu X.
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Beweis. Das folgt direkt aus der Eigenschaft, dass (G,ds) ~qi Cay(G,S) bzw. dass
<G7d5> ~q.i. Cay<G, S) gllt =

Beweis von Theorem[3.3.9. Zu 1.: Wir zeigen zunichst, dass die Gruppe G endlich
erzeugt ist. Sei dazu zy € X ein beliebig gewéhlter Basispunkt in X. Sei R > 0, sodass

X = U g.Br(xo).

geG
Sei B := Bgr(xq). Wir setzen nun
S :={g € G| g.Br(xo) N Br(xy) # }.

Da G auf X eigentlich diskontinuierlich wirkt, ist .S endlich.
Wir wollen jetzt zeigen, dass S ein Erzeugendensystem fiir G ist. Beobachte zunéchst,
dass B kompakt ist und somit die Konstante

c:=inf{d(B,g.B) | g € G\ S} =inf{d(x,gy) | z,y € B,g € G\ S}

wohldefiniert und echt grofser 0 ist. Denn: Sei D die Distanz zwischen B und ¢.B5,
sieche Abbildung Es gibt hochstens endlich viele ¢’.B mit Abstand < D zu B. Das
impliziert wiederum, dass ¢ eigentlich ein Minimum {iber endlich viele g € G'\ S ist.

s O

Abbildung 3.2: Abstand D zwischen G und ¢.B.
Wihle jetzt ein g € G\ S. Wir wollen g mithilfe der s € S ausdriicken. Es gilt:
d(xg,9.x0) >2R+c> R+c.

Betrachte dazu Abbildung [3.3]

B 4

Abbildung 3.3: Abstand zwischen Mittelpunkten der Bélle, mit kleinstmoglichem Ab-
stand c.

Es existiert also ein £ € Nxg, sodass gilt:
R+ (k—1)-c<d(zg,gx0) < R+k-c.

Sei nun v eine Geodatische von xy nach gry. Wahle Punkte x; auf v, sodass xx,1 =
gxo ist und sodass d(xp,z1) < R und d(x;,x;41) < c fir alle ¢ = 1,... k gilt (siehe
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Abbildung . Nach Definition von ¢ gibt es dann ¢g; € G mit gy = 1, gr = g, sodass
i1 € ¢;B, da aukerdem X = UgeG gB gilt. Siehe dazu Abbildung ﬁ

Abbildung 3.5: Mdégliches Szenario fiir Elemente g; 1 mit z; € ¢; B.

Damit fiir i = 1 jetzt 2, € go.B = B ist, muss also d(zg, 7;) < R sein. Setze s; := g; ', - g;
fir+ =1,...,k. Dann ist

d(B,s;B) = d(gi-1B, g;:B) < d(x;, z;41) < c.

Es folgt s; € S.
Nun gilt allerdings:

s182- sk = (95" 91) (97" g2) - - - (g 19%) = g = 9,
=1

da go = 1. Somit ist g durch S darstellbar. Es folgt Aussage (1), G ist endlich erzeugt.
Zu 2.: Als néchstes wollen wir zeigen, dass (G, ds) quasi-isometrisch zu X ist. Wir
definieren die Bahn-Abbildung

f:G—X
g+ g.xo

fiir ein festes g € X.
Nach Konstruktion hat diese Abbildung f ein quasi-dichtes Bild in X (jeder Punkt in
X hat hochstens Abstand R zu einem gx).
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Es bleibt noch zu zeigen, dass f eine quasi-isometrische Einbettung ist. Das heifst, wir
miissen K > 1 und C' > 0 finden, sodass fiir alle g, h € G gilt:

1
77ds(9,h) = € < dl(gzo, hwo) < Kds(g,h) + C. (3.3.1)
Wir konnen uns aus folgendem Grund auf den Fall ¢ = 1 beschranken: Es gilt

d(gzo, hzo) = d(xg, (g~ hxy), da die Gruppe durch Isometrien wirkt. Ferner gilt ds(g, h) =
ds(1,g7'h), da die Wortmetrik links-invariant ist.
Sei also h € G beliebig und setze

L := max{d(xg, sxg) | s € S}.

Sei K := max{:,L,2R} und C' := max{%,c}. Wir werden im Laufe der Rechnung
sehen, warum das die richtige Wahl fiir K und C' ist.
Fall 1: Sei h = 1. Dann ist d(xo, hxo) = ds(1, h) und die Ungleichung ist erfiillt.
Fall 2: Sei h = s fiir s € S. Nach der Definition von S ist dann d(xg, sxo) < 2R. Weiter
ist dg(1,s) = 1 und nach Definition oben k > 2R, C' > % Somit haben wir

1 1
Eds(]l,s)—C':——C’SOSd(mO,sxo)~~SQRSKSK-dS(]l,S)—l— C

K —_— =~
=1 20

also gilt Ungleichung [3.3.1]
Fall 3: Sei jetzt h € G\ S. Aus dem Beweis von (1) wissen wir, dass dg(1,h) < k ist,
wobei k hier so gewahlt ist, dass R+ (k — 1) - ¢ < d(xo, hzo) gilt. Daraus folgt

R+ (dg(1,h) — 1) - c < d(xg, hxg)

und schlieflich oo
¢-dg(1,h) —c < d(zg,hre) — R < d(xg, hxy).
Gilt d(xg, hzg) < L -dg(1,h), so haben wir insgesamt, dass
c-ds(1,h) —c < d(xg,hzg) < L-ds(1,h).

Da K > L und K > % und C' > c ist somit die Ungleichung . Es bleibt also
nur die Behauptung d(xg, hxg) < L - dg(1,h) zu zeigen. Wir schreiben h = s;--- s

(minimal) mit s; € S fiir alle ¢ — 1,..., k. Damit gilt nach iterativer Anwendung der
Dreiecksungleichung:
d(xg, hag) = d(zg, S1 - SkTo)
< d(xg, s5170) + d(s120, S1 - * - SkTo)
< d(zg, s170) + d(s120, S152%0) + - -+ + d(s1 - Sp—1T0, 51 * * SpTo)
= d(z9, s170) + d(xq, S220) + - - - + d(xg, SpT0)
<L-k=L-ds(L,h).
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Somit gilt (2) und wir sind fertig. O

Bemerkung 3.3.11. Milnor-Svarc liefert nur eine quasi-Isometrie, keine Bilipschitz-
Aquivalenz.

Bemerkung 3.3.12. Die Voraussetzungen des Milnor-Svarc Lemmas lassen sich wie folgt
abschwichen:

Es sei die Wirkung G ~ X durch Isometrien auf einem metrischen Raum (X, d) ge-
geben. Sei weiter X (C, D)-qausi-geodétisch, das heift fiir alle z,y € X existiert eine
(C, D)-quasi-Geodéte von x nach y, also eine (C, D)-quasi-isometrische Abbildung (Ein-
bettung) v : [0,1] — X mit v(0) = x und y(I) = y. Auferdem existiere eine Teilmenge
B C X mit diam(b) < oo und

X=\JgB

geG

sodass zusétzlich fiir B’ := Byppy = {# € X | Jy € B mit d(x,y) < 2D} gilt, dass
S:={geG|gB NB +o}
endlich ist. Dann ist G von S erzeugt und quasi-isometrisch zu X.

Beispiel 3.3.13. Wir verwenden die Notation von Bemerkung . Sei X = R? mit
der euklidischen Metrik. Der Raum X ist geodétisch und alle geodéatischen Rédume sind
quasi-geoditisch mit C' = 1 und D = 0. Nun wirke G := Z? ~ X durch Translationen,
das heifst

7P xR?* -+ X

(GG GEs)

Setze B :=[0,1] x [0,1]. Dann ist S = {(}) € Z* | (}).B' N B’ # @} cin Erzeugenden-
system (aber nicht minimal). Hier ist D = 0 also ist B’ = Byp(B) = B. Das impliziert

(OO IO O

Die Menge S.B ist in Abbildung [3.6]lila dargestellt.
Man kénnte dquivalent dazu auch zq als Mittelpunkt des dunklen Késtchens (bei (%, %))
wahlen und R = \/Lﬁ und dann S wéahlen wie im Beweis von Theorem |3.3.9]

Wir wollen uns jetzt einige direkte Folgerungen aus dem Milnor-Svarc Lemma m
anschauen. Abkiirzend schreiben wir:

Definition 3.3.14 (Geometrische Wirkung). Eine geometrisch Wirkung G ~ X
ist eine eigentlich diskontinuierliche, kobeschrénkte Wirkung durch Isometrien.
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Geometrische Wirkungen sind genau die, auf die wir den Satz von Milnor-Svarc anwen-
den koénnen!

Beispiel 3.3.15 (Geometrische Wirkungen). Die Folgenden Gruppenwirkungen sind
Beispiele geometrischer Wirkungen:

1. Die Translationswirkung von Z? auf R? ist geometrisch. Siehe dazu Abbildung 3.6]

2. Die Spiegelungsgruppe W in Iso(R?), die durch Spiegelungen am Aufspann der drei
Seiten eines gleichseitigen Dreiecks erzeugt wird ist geometrisch. Sie entspricht der
Coxetergruppe W = (s1, S, 53 | (s;8;)? fiir alle 4, j).

3. Die Linkstranslationswirkung einer von S endliche erzeugten Gruppe G auf jedem
ihrer N Cayleygraphen
Cay(G, S) oder Cay(G, S) ist ebenfalls eine geometrische Wirkung.

Wir kénnen den Satz von Milnor-Svarc auf diese Beispiele anwenden und erhalten die
quasi-Isometrien Z2 ~gi R? und W ~qi R2. Aus dem 3. Beispiel ergibt sich, dass die
freie Gruppe F}, mit k£ Erzeugern quasi-isometrisch zu einem 2k-regulédren Baum ist.

Beispiel einer nicht-geometrischen Wirkung ist die Rotationswirkung von SO(2) auf
R2. Diese Wirkung ist nicht eigentlich diskontinuierlich.

Abbildung 3.6: Translationswirkung von Z? auf R?, mit markiertem Bereich S.B. Dabei
ist S durch lila Punkte markiert, der Ursprung (0,0) € S durch den
schwarzen Punkt und B’ = B = [0,1] x [0,1] C B.S durch die etwas
dunklere Flache.

Wir betrachten nun eine topologische Variante des Milnor-Svarc Lemmas. Dazu bend-
tigen wir folgendes Lemma, dessen Beweis wir als Ubungsaufgabe stellen. Siehe Ubungs-

aufgabe [6.3.4]
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Lemma 3.3.16 (Metrik fiir Quotientenrdume). Sei (X, d) ein eigentlicher metri-
scher Raum. Sei o : G — Iso(X) eine Wirkung von G auf X .
Sei weiter p : X — G\X die natiurliche Projektion auf den Quotienten. Setze

d(z,y) := inf{d(z,y) | p(z) = T und p(y) = ¥}

fiir z,y € G\X. Dann gilt:

1. Das Infimum ist ein Minimum: Es existieren x,y € X mit d(Z,y) = d(z,y),
sodass p(x) = T und p(y) =y gilt.

2. Die Abbildung d ist eine Metrik auf G\X.

Definition 3.3.17 (kokompakte Wirkung). Eine Wirkung G ~ X auf einem
topologischen Raum X heifst kokompakt, wenn der Quotient der Wirkung G\X
kompakt ist beziiglich der Quotiententopologie.

Beispiel 3.3.18 (kokompakte Wirkungen). Wir betrachten einige (Nicht-)Beispiele ko-
kompakter Wirkungen.

1. Sei X kompakt und wegzusammenhéngend sowie )g' die universelle Uberlagerung
von X. Dann ist die Gruppenwirkung m1(X) ~ X durch Decktransformationen

eine kokompakte (und eigentliche) Wirkung. Es ist 7 ( X)\X =X

2. Die Wirkung Z ~ R? durch Translation lings der x-Achse ist nicht kokompakt.
Der Quotientenraum entspricht einem unendlichen Zylinder und ist nicht kompakt.

Siehe dazu links in Abbildung

3. Die Wirkung Z? ~ R? durch Translation lings der x-Achse und der y-Achse ist
kokompakt. Der Quotientenraum ZQ\R2 ist ein flacher Torus. Siehe dazu Mitte
der Abbildung

4. Die Wirkung G ~ Cay(G, S) =: T ist kokompakt. Der Quotientenraum G\F ist
eine Rose mit n = |S| Blittern. Siche dazu rechts in Abbildung (3.7

Abbildung 3.7: Beispiele fiir Quotientenrdume. Vergleiche Beispiel |3.3.18|
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Es gilt folgender Satz, der sich aus der bereits bewiesenen Variante und den gerade
eingefithrten Definitionen ableiten ldsst.

~

Theorem 3.3.19 (Topologischer Mﬂnor—évarc). FEine Gruppe G wirke eigentlich
diskontinuierlich, kokompakt und durch Isometrien auf einem eigentlichen, geodd-
tischen metrischen Raum X. Dann ist G endlich erzeugt und die Abbildung

G— X
g — g.%o

ist fiir alle xqg € X eine quasi-Isometrie.

Beweis. Siehe Ubungsaufgabe [6.3.5] O

Wir sehen nun erste direkte Anwendungen dieses Satzes.

Korollar 3.3.20. Sei G endlich erzeugt und sei H < G eine Untergruppe mit
|G : H] < 00. Dann ist H endlich erzeugt und G ~,; H.

Beweis. Sei S ein endliches Erzeugendensystem von G. Dann wirkt H ~ Cay(G,S)
isometrisch durch Linksmultiplikation. Diese Wirkung erfiillt die Voraussetzungen von
Theorem [3.3.9; Die Wirkung ist eigentlich diskontinuierlich, da G bereits so wirkt. Der
Index von H in G ist endlich, also gibt es ein endliches Vertretersystem B von H\G,
das insbesondere beschrénkt ist. Also ist H ~ Cay(G, S) kobeschrankt. Dariiber hinaus
ist Cay(G,S) geodétisch. Mit Theorem gilt also H ~g; Cay(G,S) und es gilt
Cay(G, S) ~qi G. Somit folgt H ~¢; G. O

Korollar 3.3.21. Sei die Gruppe G endlich erzeugt und N eine endliche normale
Untergruppe von G. Dann ist G/N ~qi G.

Beweis. Siehe Ubungsaufgabe [6.3.6] O

Bemerkung 3.3.22. Korollar(3.3.20|und [3.3.21] besagen, dass endliche Gruppen den quasi-
Isometrie-Typ einer Gruppe nicht beeinflussen. Wir sagen auch ,,G' unterscheidet sich
von GG’ durch eine endliche Gruppe®, wenn entweder G isomorph zu einer Untergruppen
von G’ von endlichem Index ist oder umgekehrt. In diesem Zusammenhang bedeuten
Korollar und Korollar [3.3.21k Unterscheiden sich G und G’ um eine endliche
Gruppe, so ist G ~q;. G'.

Beispiel 3.3.23. Hier ein paar Beispiele fiir quasi-Isometrien:

1. Jede endliche Gruppe ist quasi-isometrisch zur trivialen Gruppe.
Diese Behauptung folgt mit der Beobachtung, dass Rdume mit endlichem Durch-
messer zum Ein-Punkt-Raum isometrisch sind.
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2. Die Gruppe D, ist quasi-isometrisch zu Z.
Weil D, eine Untergruppe von Index 2 hat, die zu Z isomorph ist, folgt die Be-
hauptung mit Korollar[3.3.20] Alternativ betrachte die Gruppenwirkung D, ~ R,
die durch Spiegelungen am Ursprung und am Punkt 1 erzeugt wird. Diese Wirkung
ist kokompakt, eigentlich diskontinuierlich und via Isometrien. Milnor-Svarc liefert
dann die Behauptung.

3. Fiir alle k > 2 ist F}, quasi-isometrisch zu F5.

Um das einzusehen konstruiere die explizite quasi-Isometrie der zugehorigen Cay-
leygraphen zu freien Erzeugendensystemen, d.h. zwischen den reguldren Baumen
T5. mit je 2k Kanten an jeder Ecken und dem Cayleygraphen T} der freien Gruppe
mit zwei Erzeugern. Oder betrachte die endliche Uberlagerung von einer Rose Ry,
mit k& Blattern auf eine Rose Ry mit 2 Bldttern. Dann gilt, dass m1(Ry) = Fj ist
eine Untergruppe von 7 (Ry) = F; ist, gegeben durch die von der Uberlagerung
induzierte Einbettung.

3.4 Quasi-lsometrie-Invarianten

Nachdem wir im letzten Abschnitt die quasi-Isometrie kennengelernt haben, wollen wir
uns in diesem Abschnitt Eigenschaften quasi-isometrischer Gruppen und Raume wid-
men. Es stellt sich zunéchst die Frage, welche Eigenschaften zwei (endlich erzeugte)
quasi-isometrische Gruppen gemeinsam haben bzw. welche Eigenschaften unter einer
quasi-Isometrie iibertragen werden. Das fiithrt uns zum Begriff der q.i.-Invariante.

Definition 3.4.1 (q.i.-Invariante). Sei V' eine Menge von Objekten einer Katego-
rie. Kine ¢.i.-Invariante mit Werten in V' ist eine Abbildung

I : {endlich erzeugte Gruppen} — V,

sodass [(G) = I(H) fiir alle endlich erzeugten Gruppen G, H mit G ~; H .

J

Solche Invarianten sind hilfreich, um zu zeigen, dass zwei Gruppen nicht quasi-isometrisch
sind. Im Allgemeinen sind sie jedoch wenig hilfreich, um zu zeigen, dass zwei Grup-
pen tatséchlich quasi-isometrisch sind. Im Allgemeinen impliziert I(G) = I(H) namlich
nicht, dass G ~q; H gilt.

Beispiel 3.4.2 (Eine erste q.i.-Invariante). Wir betrachten hier erste elementare Bei-

spiele fiir q.-i.-Invarianten. Sei V' = {0, 1}. Dann ist die Abbildung

1(G) =

0 G endlich
1 G unendlich

eine QI-Invariante.
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Es gibt kaum Invarianten, die auf der ganzen Familie endlich erzeugter Gruppen de-
finierbar sind. Daher schrénkt man sich oft auf eine (leicht definierbare) Teilklasse von
Gruppen ein. So auch im néchsten Beispiel in dem wir auch ein nicht-Beispiel betrachten.

Beispiel 3.4.3 (nicht-Beispiel einer q.i.-Invariante fiir freie Gruppen ). Sei V' = N und
auf der Menge aller endlich erzeugten, freien Gruppen sei die Abbildung I(F') = rang(F')
definiert. Dann ist I keine QI-Invariante.

Manchmal ist folgende Formulierung fiir q.i.-Invarianten leichter zu greifen:

Definition 3.4.4 (Geometrische Eigenschaft). Eine Eigenschaft P von endlich
erzeugten Gruppen heifst geometrisch, wenn gilt: Fiir eine Gruppe G mit der Ei-
genschaft P und eine Gruppe H mit G ~; H folgt immer, dass auch H die
Eigenschaft P erfiillt.

Bemerkung 3.4.5. Die Begriffe einer q.i.-Invariante und einer geometrischen Eigenschaft
entsprechen einander. Fiir eine geometrische Eigenschaft P, wihle V' := {0,1} und
definiere

1(G) = 0 G hat Eige.nschaft P
1 G hat P nicht.

Dann ist [ eine q.i.-Invariante.
Fiir eine q.i.-Invariante I sage, dass eine endlich erzeugte Gruppe G genau dann die Ei-
genschaft P, erfiillt, wenn I(G) = v € V gilt. Dann ist P eine geometrische Eigenschaft.
Daher sagt man manchmal, dass eine Eigenschaft P invariant unter quasi-Isometrien
oder eine q.i.-Invariante ist, wenn sie geometrisch ist.

Beispiel 3.4.6. Fiir einige Figenschaften wissen wir bereits, dass sie geometrisch sind.

1. Fur alle n € N ist die Eigenschaft, virtuell (insb. isomorph zu) Z" zu sein, eine
geometrische Eigenschaft.

2. Endlich zu sein ist geometrisch.

3. Abelsch zu sein ist nicht geometrisch. Es gibt zum Beispiel sowohl endliche Grup-
pen die abelsch sind als auch solche die nicht abelsch sind. Der Beweis fiir unend-
liche Gruppen ist sehr schwer.

4. (Virtuell) frei und endlich erzeugt zu sein ist geometrisch.

5. Weitere geometrische Eigenschaften: Hyperbolizitét, (manche) Rander von Grup-
pen, Enden, Gruppenwachstum.

Unser néchstes Ziel ist es zu beweisen, dass auch endlich préisentiert zu sein geometrisch
ist. Dazu brauchen wir einen Raum, auf dem die Gruppen wirken und der uns die endliche
Prasentierung auch kodiert.
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Definition 3.4.7 (Cayley-2-Komplex). Sei G endlich présentiert, das heifst
G = (S| R) mit S und R endlich. )
Konstruiere den Cayley-2-Komplex K(S, R) =: K wie folgt:

1. Fir alle Relationen r € R mit [(r) = n betrachte ein regulires n-gon
(Kantenlénge 1) mit ausgezeichneter Startecke und gerichteten, beschrifteten
Kanten, die dem Wort r entsprechen, wenn man sie im Uhrzeigersinn ab-
liest.Hierbei entspricht die Inversenbildung der Umkehrung der Orientierung
einer Kante. Dazu betrachte Abbildung[3.8b| Fiir Beispielpolygone betrachte

Abbildung [3.84]

2. Betrachte den gerichteten(!) Cayleygraphen (T%;(G, S) und klebe an jede
Ecke, an der ein gerichteter, mit r beschrifteter Zykel startet, eine der oben
beschriebenen Zellen an.

An jeder Ecke (also fiir jedes g € G) wird eine Zelle pro Wort r € R eingeklebt!

o o
ct b
s’ b
- c ——o - <o
o ot o o?
(a) Zellen fiir die Relationen aba='b~! (b) Inverse Elemente entsprechen umge-
und abca™'b~'c™! mit ausgezeichneter kehrter Orientierung.
Startecke.

Abbildung 3.8: Zur Konstruktion des Cayley-2-Komplexes.

Beispiel 3.4.8. Wir betrachten den Cayley-2-Komplex fiir erste Gruppen.

1. Sei G = Z? = (S | R) mit Erzeugern S := {a = (}),b = (})} und Relationen
R = {r = aba~'b~'}. Dann entspricht (G, R) der Parkettierung der Ebene mit
Quadraten. Siehe Abbildung (3.9,

N
v 7
~ a{f 2 & 4
7 7
LA £LA £ s 4
a ('Y a
/] 4

a1

Abbildung 3.9: Der Cayley-2-Komplex von Z2.

Der Cayleygraph formt ein Gitternetz und jede der Zellen hat die Form eines Qua-
drats. Die Beschriftung der Kanten und die Wahl der Startecke ist dabei nicht
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eindeutig. Vergleiche hierzu Abbildung|3.10] Dort sieht man welche Quadrate ein-
ander entsprechen, wenn wir die definierende Relation abéndern (was dann einer
Anderung der Startecke entspricht).

ot o %

Abbildung 3.10: Zellen des Cayley-2-Komplexes von Z2, fiir die Relation aba=1b1.

2. Sei G = (S| R) mit S = {a} und R = {a*}. Der orientierte Cayleygraph besteht
aus zwei Ecken und zwei entgegengesetzt orientierten Kanten zwischen ihnen.

Nun wird eine Zelle in Form eines 2-gons, bzw. in der Form einer D? zwei Mal
angeklebt. Einmal an der Ecke 1 und einmal an der Ecke a. Der Cayley-2- Komplex
K = K(S, R) ~ S$? ist dann topologisch eine 2-Sphére. Siehe dazu Abbildung(3.11]
Hier ist G' = 7 (RP?) und K ist die universelle Uberlagerung von RP2.

Q&

Abbildung 3.11: Der Cayley-2-Komplex von (a | a?), isomorph zu S2.

Definition 3.4.9 (Présentationskomplex K := (S, R)). Sei G = (S | R) eine
endlich prasentierte Gruppe. Definiere einen Raum (CW-Komplex) K := K(S, R)
wie folgt:

1. Der Raum K enthélt eine Ecke v (0-Zelle).

2. Fir alle s € S klebe eine orientierte und mit s beschriftete Kante e, der
Léange 1 mit beiden Enden an v (1-Zellen).

3. Fiir jedes Wort © = s1---5;,;) € R klebe eine Zelle D, (ein I(r)-gon mit
beschrifteten Kanten wie in Definition [3.4.7)) an die Kanten beschriftungs-
und orientierungserhaltend an (2-Zellen).

Klebe eine Kante s; an die Kante e, orientierungserhaltend an, wenn s; € S
gilt und orientierungsumkehrend, wenn s; ' € S und s; ¢ S gilt.

Prof. Dr. Petra Schwer  Geometrische Gruppenteorie WS 2025/26 61



Beispiel 3.4.10. Wir betrachten einige Beispiele fiir Cayley-2-Komplexe und Présen-
tationskomplexe:

1. Sei G =7Z* = (a,b| aba='b~'). Dann wird K wie in Abbildung gebaut.

yP

t
I
g

Abbildung 3.12: Bauplan fiir den Prisentationskomplex von G = Z* = (a,b | aba='b™1),
durch ankleben von zwei Kanten e, und e, sowie einer 2-Zelle an eine
Ecke v.

2. Fiir die freie Gruppe Fg mit Erzeugendensystem S gilt K(Fg, S) = (]—a3;(FS,S)
und /C ist eine Rose mit #S' Blattern.

3. Es gilt ist K({a}, {a*}) = RP?, vergleiche Abbildung [3.13]

o
+
acy «Q

® ——> — » RP*

Abbildung 3.13: Bauplan fiir den Prisentationskomplex von (a | a?)

Lemma 3.4.11 (Zusammenhang von K und K). Sei G = (S | R) eine endlich
prasentierte Gruppe. Dann gilt:

1. Der Prasentationskomplex K ist Quotient des Cayley-2-Komplexes K, mo-
dulo der natiirlichen G-Linkstranslationswirkung auf IC. Das heifit, es gilt:

Kzg\’é.

2. Fir jeden anderen Raum X mit einer lokal isometrischen Abbildung
v : X — K emistiert eine lokale Isometrie 1 : KK — X, sodass folgendes
Diagramm kommutiert:

pr

N ——

\”"X
ey
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Beweis. Siehe Ubungsaufgabe m m

Der Cayley-2-Komplex K ist also die universelle Uberlagerung des Priisentationskom-
plexes K und es gilt 71 (K) = G mit Satz von Seifert und van Kampen.

Lemma 3.4.12. Sei G von S endlich erzeugt und seim : F\(S) — G die natirliche
Projektion. Sei R C Ker(w). Sei X der Komplex, den man durch Ankleben von
2-Zellen D, wie in Definition aus Cay(G,S) und r € R enthdlt.

Dann gilt: X ist einfach zusammenhdngend genau dann, wenn (R)§ = Ker(r).

Beweisskizze. (siehe auch [BH99. S. 135]).
Der Cayleygraph Cay(G, S) ist isomorph zum Quotienten

Ker(ﬂ)\c—a);(F(S)’ S)a

wobei C—ay)(F(S), S) ein Baum ist. Es folgt ﬂl(C—ay)(G, S)) = N := Ker(7) und ein Wort in
SUSTist in N genau dann, wenn es der Beschriftung eines Zykels in (Ta};(G, S) ent-
spricht, der in 1 beginnt und endet. .

Sei u € F(S) ein reduziertes Wort und v,, eine Ecke in Cay(G, S), in der der eindeutige
Pfad mit Label u endet, der in 1 startet.

Klebe startend in v, eine Scheibe (ein n-gon) an, deren Randkanten mit r beschriftet
sind. Dann gilt:

1 (resultierender 2-Komplex) = IV / (uw=ru) -

Allgemein gilt fiir den Komplex X, also C—ay)(G, S), verklebt mit 2-Zellen D, fiir alle
r € R an allen v € GG, mit Seifert van Kampen:

m(X)=N/(r)g.

Insbesondere ist der Komplex X einfach zusammenhidngend genau dann, wenn
(R)& = N gilt. O

~

Theorem 3.4.13 (Endlich présentiert zu sein ist geometrisch). Sei G eine end-
lich erzeugte Gruppe mit Erzeugendensystem S und Relationen R, sodass auch
|R| < oo gilt. Sei H von S" endlich erzeugt und H ~,; G.

Dann ist H endlich prasentiert und es existiert eine endliche Menge an Relationen

R, sodass H = (S" | R').

Beweis. Setze G1 = G, Gy := H, S; := 5,5, := 5 und I'; := (Ta};(Gi,Si); Sei p die
Lange des langsten Wortes in R. Wir wissen, dass der Cayley-2-Komplex K; von G,
einfach zusammenhéngend ist.
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Abbildung 3.14: Relation zwischen f;, f und ¢.

Es ist G ~qi G2 und somit existieren (C, D)-quasi-Isometrien f und f’ mit

AN
Iy Iy,
~
7
die fiir gewisse C, D quasi-invers sind.

Sei weiter > 0 so gewahlt, dass d(f'(f(v)),v) < u fir alle v € I'y (moglich weil f, f/
quasi-Inverse) gilt.

Setze m := max{p, 4, C, D} und M := 3-(3m?+5m+1). Konstruiere einen 2-Komplex
K}, aus I'y durch Ankleben einer 2-Zelle an jeden reduzierten (!) Kreis der Lange kleiner
gleich m in T'y. Achtung: Der Komplex K ist kein Présentationskomplex, da wir noch
nicht wissen, dass (G5 endlich présentiert ist.

Sei jetzt [ ein Kantenkreis in T'y, das heifst | = (g1,...,9n,01) mit g; € Gy fiir alle
i. Betrachte die stetige Abbildung f; : 0D? — Iy, wobei D? eine Kreisscheibe mit
simplizialem Rand mit n Kanten und f;(0D?) = [ ist.

Mit Lemma folgt dann, dass G5 endlich prisentiert ist, wenn wir zeigen kon-
nen, dass f; eine stetige Fortsetzung f; : D? — ICiy besitzt, das heifst wenn K, einfach
zusammenhangend ist.

Um dies zu zeigen, seien v; die Urbilder von g; unter f;. Sei nun ¢ : 9D? — I'; eine
Abbildung, die v; auf f(g;) € T’y und die Kante {v;,v;11} auf eine Geodétische von
f(g:) nach f(g;41) schickt (Indizes modulo n). Weil K; einfach zusammenhéngend ist,
erweitert ¢ stetig auf eine Abbildung é . D? — K;. Die Zusammenhinge werden in
Abbildung [3.14] illustriert.

Wir werden jetzt mithilfe von K; die Schreibe D? triangulieren und damit deine Erwei-

terung fl von f; definieren.
1. Schritt: Fiir alle z € D? definiere Elemente h, € G; = V(I'y) = G wie folgt:

1. Ist ¢(z) eine Ecke, so setze h, = ¢(z). Insbesondere gilt h,, = f(g;) fiir alle i.

2. Ist ¢(x) in einer offenen Kante bzw. einer 2-Zelle enthalten, so wihle eine (belie-
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bige) Ecke der Kante bzw. Zelle als h,.

Da die Abbildung ¢ stetig ist, gilt dann d(hy, hy) < p fiir alle Punkte z,y, die nah genug
sind in D% Weiter ist d(¢(x), hy) < 3 fiir alle z € OD? (weil Kanten in 9D? alle Linge
1 haben).

2. Schritt: Trianguliere D? nun so, dass alle Ecken v; in 0D? Ecken der Triangulierung
T sind und so, dass fiir alle benachbarten Ecken ¢,t von T gilt: d(hy, hy) < p.

3. Schritt: Setze fi|opz := f; und fi(z) := f'(h,) fiir alle 2 im Inneren von D2

Behauptung: Fiir alle benachbarten Ecken ¢,¢ der Triangulierung 7T gilt

Ist die Behauptung wahr, so kénnen wir fl stetig auf D? erweitern, indem wir Kanten
von 7 auf Geodéten in I'y schicken und einsehen, dass (nach Konstruktion) Kreise der
Lénge kleiner als M eine 2-Zelle in K, beranden. Das impliziert, dass f’l stetig auf die
Dreiecke in 7 von D? erweitert werden kann. Es ist also noch die Behauptung zu zeigen.

Es muss lediglich die Ecke ¢ in D? := D? \ 9D? betrachtet werden und ¢’ € 9D?.
Sei t' zwischen v; und v;;1. Dann gilt mit der Dreiecksungleichung und da f’ eine
(C, D)-quasi-Isometrie ist:

(Cp+ D) +(C 5+ D)+ [Cd(6(w), i) + D)
+d(f'(f(9:),9i) +1

—~—

=¢(vi)
<(Cp+D)+(=+D)+(C-(C+D)+D)+pu+1

M
3

o Q

<3mP4+5m+1<

]

Wir werden in den nédchsten Wochen noch einige weitere Beispiele fiir QI-Invarianten
kennen lernen:

e Hyperbolizitét
e Ende von Réumen/Gruppen

e Gruppenwachstum
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