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2 Freie Gruppen und
Gruppenpräsentierungen

Jede Gruppe lässt sich als Quotient einer freien Gruppe auffassen. Der Kern der natürli-
chen Projektionsabbildung ist dann eine normale Untergruppe der freien Gruppe. In der
geometrischen Gruppentheorie untersuchen wir oft Gruppen, deren Kerne als normale
Hülle von endlich vielen definierenden Relationen, d.h. Wörtern in der freien Gruppe,
auftauchen. Es gibt zahlreiche Klassen von Gruppen, die genau durch solche abstrakten
Beschreibungen mit Erzeugern und Relationen definiert sind.
In diesem Kapitel werden wir freie Gruppen sowie die Darstellung von Gruppen durch
Angabe von Erzeugern und Relationen kennen lernen.

2.1 Freie Gruppen

Dieses Kapitel führt in die Theorie der freien Gruppen ein. Zunächst werden freie Grup-
pen über einem Alphabet direkt konstruiert und dann ihre universelle Eigenschaft nach-
gewiesen.

Definition 2.1.1 (Freie Gruppe). Eine Gruppe G heißt frei, wenn es ein Er-
zeugendensystem S in G gibt, sodass jedes nicht-leere reduzierte Wort in S± ein
nicht-triviales Element in G definiert. Wir sagen dann G ist frei von S erzeugt
und nennen S freies Erzeugendensystem von G.

Bemerkung 2.1.2. Sei S ein Erzeugendensystem einer Gruppe G. Dann ist S kein freies
Erzeugendensystem, wenn eine der beiden folgenden Eigenschaften erfüllt ist: Es existiert
ein s ∈ S mit s−1 ∈ S, oder 1 ∈ S. Vergleiche auch Übungsaufgabe 6.2.2.

Um zu zeigen, dass es freie Gruppen gibt werden wir diese explizit konstruieren.

Definition 2.1.3 (Reduzierte Wörter). Sei A eine beliebige Menge.

1. Ein Wort w über A ist eine endliche Folge von Elementen aus A, das heißt
w = y1 · · · yn mit yi ∈ A für alle i = 1, . . . , n.

2. Sei A−1 := {a−1 | a ∈ A} die Menge der formalen Inversen der Elemente
in A. Dann heißt A± := A ∪ A−1 ein Alphabet. Wörter über A± sind dann



Ausdrücke der Form

w = yε11 · · · yεnn = z1 · · · zn,

mit yi ∈ A und εi ∈ {±1}, wobei y+1
i := yi, bzw. mit zi ∈ A±.

3. Ein Wort über A± heißt reduziert, falls es kein Teilwort der Form aa−1 bzw.
a−1a enthält.

4. Sei w = yε11 · · · yεnn ein Wort über A±. Dann nennen wir n die Länge von w
und schreiben |w| = n.

Bemerkung 2.1.4. Ist die Menge A in Definition 2.1.3 Teilmenge einer Gruppe G, so ist
für jedes a ∈ A auch a−1 ein Gruppenelement und wir setzen

A−1 := {a−1 ∈ G | a ∈ A}.

Um aus der Menge der Wörter über einem Alphabet eine Gruppe zu machen müssen
wir berücksichtigen, dass das Produkt eines Buchstaben mit seinem (formalen) Inversen
in der Gruppe trivial sein muss. Aus diesem Grund führen wir jetzt Reduktionsschritte
und reduzierte Formen ein.

Definition 2.1.5 (Reduzierte Form eines Wortes). Sei A eine beliebige Menge
und w = y1 · · · yn ein Wort über A±, also yi ∈ A± für alle i = 1, . . . , n.

1. Ein elementarer Reduktionsschritt von w besteht aus dem Löschen eines
Teilwortes des Form aa−1 aus w, mit a ∈ A±.

2. Eine Reduktion von w ist eine Folge elementarer Reduktionsschritte

w → w1 → w2 → · · · → wn,

sodass wn ein reduziertes Wort ist.

3. Wir nennen das Ende wn einer Reduktion eine reduzierte Form von w und
schreiben für diese w.

Obige Definition einer reduzierten Form ist nur dann hilfreich, wenn verschiedene Re-
duktionen eines gegebenen Wortes übereinstimmen. Das wird in den folgenden Lemmata
nachgerechnet.
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Lemma 2.1.6 (Elementare Reduktionsschritte kommmutieren). Seien w → w1

und w → w2 zwei elementare Reduktionsschritte von w. Dann existiert ein w0 und
elementare Reduktionsschritte wi → w0 für i = 1, 2, sodass das folgende Diagramm
kommutiert:

w

w1 ⟲ w2

w0

Beweis. Seien λ1 : w → w1 und λ2 : w → w2 die nach Annahme existierenden elementa-
ren Reduktionsschritte. Wir nehmen ohne Einschränkung an, dass λ1 von λ2 verschieden
ist und betrachten zwei Fälle:
1. Fall: Disjunkte Reduktionsschritte. D.h. die elementaren Reduktionsschritte λi für
i = 1, 2 löschen jeweils auftretende Teilwörter der Form (y1y

−1
1 ) bzw. (y2y−1

2 ) im Wort w
(mit yi ∈ A±) deren Indizes sich nach Annahme nicht überlappen. Wir können w daher
für geeignet gewählte und möglicherweise leere Wörter ui über A± wie folgt schreiben:

w = u1(y1y
−1
1 )u2(y2y

−1
2 )u3.

Dann gilt mit w0 := u1u2u3 offensichtlich, dass λ1 ◦ λ2 = λ2 ◦ λ1 und das resultierende
Wort in beiden Fällen gleich w0 ist.
2. Fall: Überlappende Reduktionsschritte. Seien λ1 und λ2 so gegeben, dass die be-
troffenen Positionen an denen Löschungen stattfinden teilweise überlappen. Dann muss
bereits y1 = y2 sein und das Wort w lässt sich schreiben als w = u1y1y

−1
1 y2u2. Die

Reduktionsschritte sind somit gegeben durch

w = u1y1(y
−1
1 y2)u2

λ2−→ u1y1u2 =: w2 und

w = u1(y1y
−1
1 )y2u2

λ1−→ u1y2u2 =: w1.

Wegen y1 = y2 ist auch w2w1 =: w0 und die Reduktionsschritte kommutieren.

Lemma 2.1.7 (Eindeutige reduzierte Form). Sei w ein Wort in A±. Dann besitzt
w eine eindeutige reduzierte Form.

Beweis. Wir verfahren mittels Induktion über die Länge |w|des Wortes w.
Ist |w| = 0, so ist w das leere Wort, reduziert und es ist nichts zu zeigen. Ebenso sind
alle Wörter der Länge 1 reduziert.
Sei jetzt |w| > 1 und seien w→w′

1 → · · · → w′
n und w→w′′

1 → · · · → w′′
m zwei Reduktio-

nen von w.
Nach Lemma 2.1.6 existiert nun eine gemeinsame Reduktion von w′

1 und w′′
1 , d.h. ein

Wort w1 in A± sowie elementare Reduktionsschritte w′
1 → w1 und w′′

1 → w1. Verglei-
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che Abbildung 2.1 in der nun der Teil des Diagramms auf den Wörtern w, w′
1, w′′

1 und
w1 kommutiert.

w

w′
1 ⟳ w′′

1

w1

w′
2 w′′

2

wk

w′
n w′′

m

λ1 λ2

λ2 λ1

Abbildung 2.1: Reduktionsdiagramm zum Beweis von Lemma 2.1.7
.

Sei nun w1 → w2 → · · · → wk eine Reduktion von w1. Diese ist nach Induktionshypo-
these eindeutig, da die Länge |w1| echt kleiner ist als die Länge |w|. Ebenso ist |w′

1| < |w|
und |w′′

1 | < |w|. Also sind nach Induktionshypothese auch die Reduktionen von w′
1 und

w′′
1 eindeutig.

Es muss also gelten, dass w′
n = wk, weil beides die eindeutige Reduktion von w′

1 be-
schreibt, und analog gilt wk = w′′

m. Also folgt w′
n = w′′

m und auch w besitzt eine eindeutige
Reduktion. Insbesondere muss gelten n = k = m.

Definition 2.1.8 (Konstruktion einer freien Gruppe). Sei A eine beliebige Menge
und A−1 die Menge der formalen Inversen. Setze

F (A) := {reduzierte Wörter in A±}

und definiere eine Verknüpfung für u,w ∈ F (A) durch

w · u := wu,

wobei wu die reduzierte Form des Wortes wu beschreibt, das durch Hintereinan-
derschreiben der Wörter w und u entsteht.
Wir nennen F (A) mit dieser Verknüpfung die freie Gruppe über A.
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Die Verknüpfung in F (A) entspricht, salopp gesagt, also

Hintereinanderschreiben+ Reduktion

von Worten über A±.
Statt F (A) schreiben wir manchmal auch F|A|, da freie Gruppen über Mengen der glei-
chen Kardinalität isomorph sind mit Isomorphismen, die durch beliebige Bijektionen auf
den Erzeugern in A induziert werden.
Zunächst müssen wir aber zeigen, dass es sich bei der Konstruktion in Definition 2.1.8
wirklich um eine freie Gruppe im Sinne von Definition 2.1.1 handelt.

Theorem 2.1.9 (F (A) ist freie Gruppe). Für eine beliebige Menge A ist die
Menge F (A) eine frei von A erzeugt Gruppe bezüglich der in Definition 2.1.8
definierten Verknüpfung.

Beweis. Die Tatsache, dass wir es mit einer Verknüpfung in F (A) zu tun haben folgt
aus Lemma 2.1.7 und der Definition der Menge F (A). Das leere Wort entspricht dem
neutralen Element und das Inverse eines Elementes yε11 · · · yεnn mit yi ∈ A und εi ∈
{±1} ist gegeben durch y−ε1

n · · · y−ε1
1 , da dann die Verknüpfung gerade dem leeren Wort

entspricht. Alle anderen Axiome einer Gruppe lassen sich leicht nachrechnen. Dass A ein
freies Erzeugendensystem ist folgt direkt aus der Definition von F (A).

Wir beweisen nun eine charakterisierende, universelle Eigenschaft freier Gruppen.

Theorem 2.1.10 (Universelle Eigenschaft freier Gruppen). Sei F eine Gruppe
mit Erzeugendensystem A ⊆ F . Die Gruppe F ist genau dann frei von A erzeugt,
wenn F folgende universelle Eigenschaft erfüllt: Für jede Gruppe G und jede Ab-
bildung Φ : A→ G ein eindeutiger Homomorphismus Φ̃ : F → G existiert, sodass
folgendes Diagramm kommutiert.

A F

G.

ι

Φ
Φ̃!

Dabei ist ι die Inklusionsabbildung von A nach F .

Beweis. „⇒“: Sei zunächst F frei von A erzeugt und sei Φ : A → G eine gegebene
Abbildung. Jedes Element g ∈ F ist ein reduziertes Wort über A± der Form

g = sε1i1 · · · s
εn
in
, mit sij ∈ A und εi ∈ {1,−1}.
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Definiere die Abbildung Φ̃ : F → G durch

Φ̃(g) := (Φ(si1))
ε1 · · · (Φ(sin))

εn . (2.1.1)

Es lässt sich leicht nachrechnen, dass Φ̃ tatsächlich ein Homomorphismus ist. Verglei-
che Übungsaufgabe 6.2.3. Außerdem ist Φ̃ gerade so definiert, dass das Diagramm kom-
mutiert. Da aber jeder Homomorphismus, für den das Diagramm kommutiert, die Gleich-
hung in 2.1.1 erfüllen muss, ist Φ̃ auch eindeutig.
„⇐“: Sei nun F eine Gruppe, die die universelle Eigenschaft bzgl. eines Erzeugenden-
systems A erfüllt. Sei G := F (A) die freie Gruppe über A. Wir wollen zeigen, dass
G ∼= F gilt. Definiere hierzu eine Abbildung Φ : A→ G durch Φ(a) := a für alle a ∈ A.
Da die universelle Eigenschaft gilt, erweitert Φ eindeutig zu einem Homomorphismus
Φ̃ : F → G = F (A).
Sei nun w ein nicht-leeres, reduziertes Wort über A±. Dann beschreibt w ein nicht-
triviales Gruppenelement in G. Es gibt somit ein g ∈ F mit Φ̃(g) = w ∈ G. Da Φ̃
ein Homomorphismus ist, folgt, dass auch g in F nicht trivial sein kann und somit
ker(Φ̃) = 1G. Da Φ̃ nach Konstruktion surjektiv ist, folgt die Behauptung.

2.2 Freie Gruppen und Bäume

Im weiteren werden wir ein paar Eigenschaften und Charakterisierungen freier Gruppen
kennen lernen, die alle mit Bäumen, also kreisfreien Graphen, zu tun haben.

Theorem 2.2.1 (Cayleygraphen freier Gruppen). Ist G frei erzeugt von S, dann
ist

#               —

Cay(G,S) ein Baum.

Beweis. Da G frei von S erzeugt ist, entsprechen die Elemente in G gerade den re-
duzierten Wörtern über S± und insbesondere ist das neutrale Elemente 1 nicht in S
enthalten. Somit folgt direkt, dass Γ :=

#               —

Cay(G,S) zusammenhängend und schleifenfrei
ist. Es bleibt also noch zu zeigen, dass keine Kreise in

#               —

Cay(G,S) existieren.
Wir argumentieren mit Widerspruch. Angenommen, es existiert ein Kreis in Γ. Dann
existieren Gruppenelemente g0, g1, . . . , gn ∈ G, und Kanten ei im Cayleygraph mit

δ(ei) = {gi, gi+1} ∀i = 0, . . . , n− 1, sowie δ(en) = {gn, g0}.

Definiere dann

sj := g−1
j gj+1 für alle j = 0, . . . , n− 1, sowie sn := g−1

n g0.

Nach Definition des Cayleygraphen
#               —

Cay(G,S) sind alle si ∈ S ∪ S−1.
Wir zeigen jetzt (mit Widerspruch), dass das Wort s0 · · · sn reduziert ist.
Angenommen, das Wort wäre nicht reduziert und beispielsweise s0 = s−1

1 . Dann gilt
g−1
0 g1 = g−1

2 g1 womit folgt, dass g0 = g2. Falls dabei g0 = g1 = g2 gilt, sind die beiden
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entsprechenden Kanten Schleifen, also s0 = s1 = e. Ist aber g1 ̸= g2, so ist Kante e0 von
Kante e2 verschieden und die ersten beiden Kanten bilden eine Doppelkante. Also gilt
1 ∈ S oder es existiert ein s ∈ S mit s−1 ∈ S, was einen Widerspruch dazu darstellt,
dass G frei von S erzeugt ist. Vergleiche dazu Bemerkung 2.1.2. Somit muss das oben
konstruierte Wort s0 · · · sn reduziert sein.
Wenn ein Kreis in

#               —

Cay(G,S) existiert, erhalten wir also ein reduziertes Wort s0 . . . sn in
G welches das triviale Element beschreibt. Insbesondere kann G nicht frei erzeugt sein
von S.

Definition 2.2.2 (Reduziertes Erzeugendensystem). Ein Erzeugendensystem S
heißt reduziert, wenn für alle s, t ∈ S gilt, dass s · t ̸= e ist.

Theorem 2.2.3 (Umkehrung von Theorem 2.2.1). Sei G eine Gruppe und S ein
Erzeugendensystem. Ist

#               —

Cay(G,S) ein gerichteter Baum, dann ist S ein freies
(insbesondere reduziertes) Erzeugendensystem und G ist frei.

Beweis. Es genügt zu zeigen, dass G ∼= FS gilt. Aus der universellen Eigenschaft freier
Gruppen erhalten wir einen Homomorphismus φ : FS → G mit φ|S = id. Da G von S
erzeugt ist, ist φ surjektiv. Es bleibt also zu zeigen, dass φ injektiv, also ein Isomorphis-
mus ist.
Angenommen, φ sei nicht injektiv. Dann existiert ein reduziertes Wort s1 · · · sn in FS

mit si ∈ S ∪ S−1 und
φ(s1 · · · sn) = eG.

Da
#               —

Cay(G,S) ein Baum ist, existieren keine Schleifen und keine Doppelkanten im Cay-
leygraphen. Das bedeutet 1 /∈ S und für alle s ∈ S gilt s−1 /∈ S. Es folgt für alle s, t ∈ S,
dass s · t ̸= 1 gilt, also dass S reduziert ist. Da φ|S injektiv ist und 1 /∈ S gilt, folgt
n > 2 für das Wort s1 · · · sn. Das reduzierte Wort definiert also einen geschlossenen Pfad
in

#               —

Cay(G,S) wie folgt: Setze

g0 := 1 und gk := gk−1φ(si) ∀k = 1, . . . , n.

Es ist insbesondere dann gn = gn−1φ(sn) = φ(s1 · · · sn) = 1 = g0. Ist dieser geschlossene
Kantenzug ein Kreis, sind wir fertig. Andernfalls gibt es k ̸= l mod n mit k < l und
gk = gl.
1. Fall: Sei l = k + 1. Dann existiert eine Schleife in

#               —

Cay(G,S) und 1G ∈ S – was im
Widerspruch zur Reduziertheit von S steht.
2. Fall: Sei l = k + 2. Dann gilt gk = gk+2 und gk = gkφ(sk+1sk+2). Daraus folgt
sk+1sk+2 = 1 und wir sehen eine Doppelkante, was ebenfalls nicht sein kann wegen der
Reduziertheit von S.
3. Fall: Sei l > k + 2. Dann gilt

gk = gl = gl−1φ(sl) = · · · = gkφ(sksk+1 · · · sl),
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wobei sksk+1 · · · sl ein reduziertes Wort der Länge (l − k) < n ist. Dann können wir
s1 · · · sn durch sk · · · sl ersetzen und erhalten induktiv einen kürzeren Kreis oder wieder
einen der Fälle 1 und 2.
In jedem Fall ergibt sich ein Widerspruch und es folgt, dass φ injektiv ist. Insbesondere
gilt G ∼= F (S). Damit ist S freies Erzeugendensystem für G.

Ziel ist es nun Theorem 2.2.4 zu beweisen und freie Gruppen mittels ihren Wirkungen
auf Bäumen zu charakterisieren.

Theorem 2.2.4 (Charakterisierung freier Gruppen via Wirkung auf Bäumen).
Eine Gruppe ist genau dann frei, wenn sie frei auf einem Baum wirkt.

Für den Beweis dieses Theorems benötigen wir weitere Hilfsmittel, die jetzt eingeführt
werden.

Definition 2.2.5 (Untergraphen und Bäume). Ein Untergraph eines Graphen
X = (V,E) ist ein Graph (V ′, E ′) mit V ′ ⊆ V und E ′ ⊆ E. Ein Unterbaum ist
ein Untergraph, der selbst ein Baum ist.

Definition 2.2.6 (Fundamentalbäume). Sei G eine Gruppe und sei X = (V,E)
ein zusammenhängender simplizialer Graph auf dem G wirke. Ein Fundamental-
baum für diese Wirkung ist ein Unterbaum von X, der genau eine Ecke aus jeder
G-Bahn in V enthält.

Beispiel 2.2.7. Die Gruppe Z wirkt auf dem Graphen X = (V,E) in Abbildung 2.2
durch Links- bzw. Rechtstranslation. Hierbei sind a, b und c Repräsentanten der 3 dis-
junkten Bahnen in V (X) und der auf a, b, c aufgespannte Untergraph ein Fundamental-
baum dieser Wirkung.

Abbildung 2.2: Ein Graph mit markiertem Fundamentalbaum für die Z-Wirkung durch
Links-/Rechtstranslation.

Proposition 2.2.8 (Existenz von Fundamentalbäumen). Sei X ein nicht-leerer,
zusammenhängender, simplizialer Graph. Dann besitzt jede Wirkung G↷ X einen
Fundamentalbaum.
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Beweis. Sei G eine Gruppe, die auf einem solchen Graphen X wirkt. Bezeichne mit
TG die Menge aller nicht-leeren Unterbäume von X, die aus jeder Bahn höchstens eine
Ecke enthalten. Diese Menge ist nicht leer, da beispielsweise jede Ecke (aufgefasst als
Graph) in TG ist. Außerdem ist TG durch die Teilbaum-Relation partiell geordnet, d.h.
für T, T ′ ∈ TG ist T < T ′, wenn T Unterbaum von T ′ ist.
Jede totalgeordnete Kette in TG hat eine obere Schranke, die Vereinigung aller Ket-
tenelemente. Mit dem Zornschen Lemma folgt, dass mindestens ein maximales Element
T0 ̸= ∅ in TG existiert.
Wir wollen nun Zeigen, dass ein solches maximales Element T0 ein Fundamentalbaum
für G ↷ X ist und argumentieren mit Widerspruch. Angenommen, T0 sei kein Funda-
mentalbaum für G↷ X. Dann existiert Ecke v ∈ V , sodass V (T0) ∩G.v = ∅.
Beh: Wir können annehmen, dass v einen Nachbarn v′′ in T0 besitzt. Wäre ein solche
Wahl nicht möglich, so wähle eine feste Ecke u ∈ T0 und einen Pfad p : u; v in X. Sei
v′ die erste Ecke auf p, die nicht in T0 ist. Diese Situation ist in Abbildung 2.3 skizziert.
Ist nun G.v′ ∩ V (T0) = ∅, dann können wir v durch v′ ersetzen, da dieses die gesuchte
Eigenschaft hat.
Falls ein g ∈ G existiert, sodass g.v′ eine Ecke von T0 ist betrachte den Teilpfad p′ :
v′ ; v. Dessen Bild g.p′ : g.v′ ; gv verbindet eine Ecke gv′ von T0 mit einer Ecke
gv ∈ G.v, die nicht in T0 liegt (da nach Annahme V (T0) ∩ G.v = ∅). Der Pfad p′

ist kürzer als der Pfad p. Iteriere den Prozess und finde schließlich eine Ecke mit der
gesuchten Eigenschaft. Es gilt die Behauptung.
Wir haben also eine Ecke v /∈ T0 mit V (T0) ∩ G.v = ∅, die einen Nachbarn v′′ ∈ T0
hat. D.h. es existiert eine Kante e mit δ(e) = {v, v′′} und v′′ ∈ T0. Füge diese Kante
e und ihre Ecke außerhalb zum Baum T0 hinzu. Der so entstandene größere Baum T ′

0

ist in TG und hat T0 als echten Unterbaum. Also gilt T0 < T ′
0, was im Widerspruch zur

Maximalität von T0 in TG steht.

Abbildung 2.3: Ein Weg von u ∈ T0 nach v, mit v′ erste Ecke, die nicht in T0 liegt.

Definition 2.2.9 (Wesentliche Kanten). Sei T ein Baum und G eine Gruppe mit
freier Wirkung auf T . Weiter sei T0 ein Fundamentalbaum dieser Wirkung.
Eine Kante e in T heißt wesentlich, wenn e /∈ E(T0), aber δ(e) ∩ V (T0) ̸= ∅ gilt.

Beispiel 2.2.10. In Abbildung 2.4 sind die Kanten e1 und e2 wesentlich. Sie gehören
nicht zu den Kanten des Fundamentalbaums T0, haben aber je eine Ecke, die in T0 liegt.

Wir können jetzt Theorem 2.2.4 beweisen.
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Abbildung 2.4: Wesentliche Kanten e1 und e2 für einen Fundamentalbaum T0 für die
Wirkung Z ↷ X aus Beispiel 2.2.7.

Beweis von Theorem 2.2.4. „⇒“: IstG frei von S erzeugt, so ist der Cayleygraph
#               —

Cay(G,S) =:
T nach Theorem 2.2.1 ein Baum, auf dem G wirkt.
Es bleibt also noch zu zeigen, dass diese Wirkung frei ist. Wegen Theorem 1.3.26 genügt
es nachzuweisen, dass S keine Elemente der Ordnung 2 besitzt. Beachte, dass in unserer
Situation

#               —

Cay(G,S) = Cay(G,S) mit vergessener Orientierung gilt.
Wir argumentieren mit Widerspruch und nehmen an, dass es ein Element s ∈ S mit
s2 = 1 gibt. Dann ist insbesondere s = s−1.
Betrachte die Abbildung φ : S → (Z,+) mit φ(s) := φ(s−1) := 1 für alle s ∈ S.
Mit der universellen Eigenschaft freier Gruppen aus Theorem 2.1.10 erhalten wir einen
eindeutigen Homomorphismus φ : G → Z für den gilt φ(ι(s)2) = 0 und folgendes
Diagramm kommutiert:

S G

(Z,+)

ι

φ φ!
⟲

Es folgt 0 = φ(s · s−1) = φ(s) + φ(s−1) = 2, also ergibt sich ein Widerspruch.
„⇐“: Sei nun eine freie Wirkung von G auf einem Baum gegeben. Wir werden mit Hilfe
von Fundamentalbäumen ein freies Erzeugendendensystem S für G konstruieren.
Dazu nutzen wir, dass nach Proposition 2.2.8 ein Fundamentalbaum für diese Wirkung
existiert. Fixiere einen solchen Baum T0. Die zentrale Idee ist, jede Kopie von T0 unter der
G-Wirkung auf eine Ecke zu „schrumpfen“ und so einen Cayleygraphen und schließlich
ein freies Erzeugendensystem zu erhalten.
Sei e = {u, v} eine wesentliche Kante in T mit u ∈ T0 und v /∈ T0. Da T0 ein Funda-
mentalbaum ist, existiert ein Element ge ∈ G, sodass g−1

e v eine Ecke von T0 ist, bzw.
sodass v Ecke von geT0 ist. Dieses Element ge ist eindeutig, denn G.v trifft den Baum
T0 in genau einer Ecke und G↷ T ist frei.
Wir definieren nun eine Kandidatenmenge für Erzeugendensystem. Setze dazu

S̃ := {ge in G : e ist wesentliche Kante von T bzgl. T0}.

Die Menge S̃ hat folgende Eigenschaften:

1. Nach der Definition von wesentlich gilt 1 /∈ S̃.
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2. Es existieren keine Elemente der Ordnung 2 in S̃, da G frei wirkt und jedes Ele-
ment endlicher Ordnung einen Fixpunkt besitzt. (Vergleiche die Übungsaufgaben
zu diesem Kapitel).

3. Sind e, e′ wesentliche Kanten mit ge = ge′ so gilt e = e′. Wäre dem nicht so würden
zwei verschiedene Kanten zwischen T0 und geT0 = ge′T0 existieren. Dies liefert
einen Kreis T was aber nicht sein kann, da T ein Baum ist.

4. Ist g ∈ S̃ so ist auch g−1 in S̃. Sei zum Beispiel g = ge das element zur wesentliche
Kante e dann gilt (ge)−1 = g(g−1e) und somit ist auch g−1e eine wesentliche Kante.

Wir können also S̃ schreiben als disjunkte Vereinigung einer Teilmenge S und der Menge
ihrer Inversen S−1. Mit obigen Eigenschaften ist S ∩ S−1 = ∅, S ∪ S−1 = S̃ und

|S| = 1

2

∣∣∣S̃∣∣∣ = 1

2
·#wesentliche Kanten von T0 in T .

Wir zeigen nun, dass S die Gruppe G erzeugt. Sei dazu Sei g ∈ G und u eine fest
gewählte Ecke in T0. Da T zusammenhängend ist, existiert ein (kürzester) Pfad p von u
nach gu. Da die Eckenmenge von T sich schreiben lässt als Vereinigung über die Orbiten
von Ecken in T0 können wir folgern, dass Elemente g0, . . . , gn in G existieren, sodass der
Pfad n+1 Kopien gjT0 von T0 durchläuft. Dabei können wir g0 = 1 sowie gn = g wählen.
Da zudem T0 ein Fundamentalbaum ist, gilt für alle j = 0, . . . , n−1, dass gjT0 ̸= gj+1T0
ist und die Kopien gjT0 und gj+1T0 jeweils durch eine Kante ej des Pfades p verbunden
sind.
Nach Konstruktion ist daher g−1

j ej eine wesentliche Kante und sj := g−1
j gj+1 liegt in

S̃. Nach Konstruktion von S ist also entweder sj oder sein inverses in S für alle j. Das
Element g lässt sich nun schreiben als

g = gn = g−1
0 gn = g−1

0 g1︸ ︷︷ ︸
=s0

g−1
1 g2︸ ︷︷ ︸
=s1

· · · g−1
n−1gn︸ ︷︷ ︸
sn−1

= s0s1 · · · sn−1.

Also ist S̃ und wegen S̃ = S
⊔
S−1 und auch S ein Erzeugendensystem von G.

Es bleibt zu zeigen, dass S die Gruppe G frei erzeugt. Kontrahiere für alle g ∈ G den
Unterbaum gT0 zu einer Ecke. Kanten zwischen gT0 und anderen Unterbäumen werden
zu kanten zwischen den resultierenden Ecken. Als Ergebnis erhält man den Graphen
Cay(G, S̃). Um nun zu zeigen, dass dieser Graph ein Baum ist reicht es, Dank Theo-
rem 2.2.3, nachzurechnen, dass Cay(G,S) keine Kreise enthält.
Wir argumentieren mit Widerspruch und nehmen an es existiere ein Zykel g0, . . . , gn−1

in Cay(G,S), also gn = g0.
Dann definiere für alle j = 0, . . . , n− 1 die Elemente sj := g−1

j gj+1. Wir können S o.E.
so wählen, dass sj ∈ S liegt. Sei weiter ej eine wesentliche Kante in T zwischen T0 und
sjT0 für alle j = 0, . . . , n− 1.
Da jedes Translat von T0 ein zusammenhängender Teilbaum von T ist lassen sich die
beiden Ecken der Kanten gjej und gjsjej+1 = gj+1ej+1, die in gj+1T0 liegen, durch einen
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eindeutigen Weg in gj+1T0 verbinden. Vergleiche dazu Abbildung 2.5). Durch Verketten
dieser Pfade lässt sich ein Kreis in T konstruieren der von T0 über T1, T2, . . . zurück nach
gnT0 = T0 führt. Es ergibt sich ein Widerspruch dazu, dass T ein Baum ist. Es kann also
Kreise dieser Form nicht geben. Es folgt, dass Cay(G,S) ebenfalls keine Kreise enthält
und S die Gruppe G frei erzeugt.

Abbildung 2.5: Kopien des Fundamentalbaums.

Im Folgenden sehen wir Anwendungen von Theorem 2.2.4 und nutzen Cayleygraphen,
um algebraische Eigenschaften zu zeigen.

Korollar 2.2.11 (Satz von Nielsen-Schreier). Untergruppen freier Gruppen sind
frei.

Beweis. Sei F freie Gruppe, G ≤ F . Mit Theorem 2.2.4 wirkt F dann frei auf einem
Baum T . Dann wirkt aber auch G frei auf T und somit ist G mit Theorem 2.2.4 frei.

Der Index einer Untergruppe G in einer Gruppe F ist die Anzahl an Nebenklassen von
G in F . Wir schreiben |F : G|.

Korollar 2.2.12 (Quantitative Version des Satzes von Nielsen-Schreier). Sei F
eine freie Gruppe von Rang n und sei G ≤ F eine Untergruppe von Index k ∈ N.
Dann ist G frei und von Rang k(n− 1) + 1. Insbesondere sind also Untergruppen
von endlichem Index in freien Gruppen von endlichem Rang endlich erzeugt.

Beweis. Sei S freies Erzeugendensystem von F und schreibe Γ := Cay(F, S). Also ist Γ
ein Baum und G und F wirken frei auf Γ. Aus dem Beweis von 2.2.4 sehen wir, dass
Rang(G) = 1

2
·E gilt, wobei E die Anzahl der wesentlichen Kanten eines Fundamental-

baums T0 ist. Aus |F : G| = k folgt, dass T0 genau k Ecken hat, da der Index gerade
der Anzahl der Nebenklassen (bzw. disjunkten Orbiten) der Gruppenwirkung entspricht.
Wir schreiben nun dΓ(v) für den Eckengrad von v in Γ. Es gilt für alle v ∈ V (Γ), dass

dΓ(v) = 2 · |S| = 2 · n
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und wir erhalten ∑
v∈V (T0)

dT0(v) = k · 2n. (2.2.1)

Andererseits ist T0 endlich und besitzt (k − 1) Kanten, die in Gleichung (2.2.1) alle
doppelt gezählt werden. Somit ist

k · 2n =
∑

v∈V (T0)

dT (v) = 2(k − 1)︸ ︷︷ ︸
2·Kanten in T0

+ E︸︷︷︸
Kanten von T0 nach Γ\T0

und es folgt die Behauptung: Rang(G) = 1
2
E = k · n− (k − 1) = k(n− 1) + 1.

Korollar 2.2.13 (freie Untergruppen von beliebigem Rang). Sei F eine freie
Gruppe von Rang m ≥ 2. Dann existiert für alle n ∈ N mit n ≥ 2 eine (freie)
Untergruppe G von F mit Rang(G) = n.

Zum Beweis siehe Übungsaufgabe 6.2.1.
Wir lernen nun ein wichtiges Werkzeug kennen mit dessen Hilfe wir freue (Unter-
)Gruppen identifizieren können.

Lemma 2.2.14 (Ping-Pong Lemma). Sei G eine von S := {a, b} erzeugte Gruppe,
die auf einer Menge X wirkt. Wenn disjunkte Teilmengen A,B ⊆ X existieren,
sodass für alle k ∈ Z \ {0} gilt:

ak(B) ⊆ A und bk(A) ⊆ B,

dann ist G frei von S erzeugt.

Beweis. Wir müssen zeigen, dass kein nicht-leeres, reduziertes Wort in G das triviale
Element 1 repräsentiert.
Sei dazu zunächst ein Element g ∈ G gegeben durch ein Wort der Form a∗b∗a∗ · · · b∗a∗,
wobei wir ∗ stellvertretend für einen beliebigen Exponenten in Z \ {0} schreiben. Das
Wort beginnt und endet also nach Annahme mit einer nicht-trivialen Potenz von a.
Dann ist mit bk(A) ⊆ B und ak(B) ⊆ A das Bild g(B) von B unter g Teilmenge von A.
Da B ∩ A = ∅ kann also g nicht gleich der Identität sein.
Jedes andere Gruppenelement g′ ∈ G ist konjugiert zu einem g obiger Form. Weil die
Konjugationsklasse des trivialen Elementes nur genau das triviale Element enthält folgt
die Behauptung für beliebiges g in G.
Also beschreiben alle nicht-trivialen, reduzierten Worte auch nicht-triviale Gruppenele-
mente und G ist frei.

Eine Erklärung für den Namen des obigen Lemmas ist in Abbildung 2.6 zu finden.
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Abbildung 2.6: Visualisierung des Ping-Pong Lemmas.

Beispiel 2.2.15. Das Ping-Pong Lemma kann genutzt werden, um freie Untergruppen
in anderen Gruppen zu finden. Als Beispiel konstruieren wir eine freie Untergruppe in

SL(2,Z) =
{(

a b
c d

)
∈ Z2×2 : ad− bc = det(· · · ) = 1

}
.

Setze
M1 :=

(
1 2
0 1

)
und M2 :=

(
1 0
2 1

)
.

Wir rechnen nun nach, dass die von M1 und M2 erzeugte Untergruppe G von SL(2,Z)
frei von Rang 2 ist: Wir spielen Ping-Pong!
Betrachte die lineare Wirkung SL(2,R) ↷ R2, die definiert ist durch das übliche
Matrix·Vektor Produkt. Eine Matrix M bildet dabei einen Vektor

(
x
y

)
wie folgt ab:(

x

y

)
7−→M ·

(
x

y

)
=

(
m11x+m12y

m21x+m22y

)
.

Dann gilt für alle n ∈ Z \ {0} und für alle
(
x
y

)
∈ R2, dass

Mn
1 ·
(
x

y

)
=

(
1 n
0 1

)(
x

y

)
=

(
x+ 2ny

y

)
.

Definiere Teilmengen A und B in R2 wie in Abbildung 2.7 dargestellt:

A := {
(
x

y

)
∈ R2 | |x| > |y|}

B := {
(
x

y

)
∈ R2 | |y| > |x|}
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Es ist A ∩B = ∅. Sei
(
x
y

)
∈ B. Dann gilt mit der Dreiecksungleichung

|x+ 2ny| ≥ |2ny| − |x|

und für n ≥ 1 und |y| > |x| gilt

|2ny| − |x| > |2y| − |y| = |y| .

Somit ist mit obiger Formel der Vektor Mn
1 ·
(
x
y

)
=
(
x+2ny

y

)
in der Menge A enthalten,

wenn
(
x
y

)
∈ B gilt. Also gilt allgemeiner Mn

1 ·B ⊆ A für alle n ̸= 0.
Analog rechnet man nach, dass Mn

2 · A ⊆ B für beliebiges n ̸= 0 gilt.
Mit dem Ping-Pong Lemma 2.2.14 folgt die Behauptung.

Abbildung 2.7: Die Mengen A und B aus Beispiel 2.2.15 zum Ping-Pong Lemma.

Theorem 2.2.16 (Rang ist wohldefiniert). Zwei freie Gruppen F (A) und F (B)
sind genau dann isomorph, wenn |A| = |B|.

Beweis. Sei zunächst |A| = |B|. Dann existiert eine Bijektion φ : A → B, die mit der
universellen Eigenschaft freier Gruppen eindeutig zu einem Homomorphismus

φ : F (A) → F (B)

erweitert. Da A und B Erzeugendensysteme sind und φ eine Umkehrabbildung φ−1

besitzt, ist φ ein Isomorphismus.
Sei jetzt F (A) ∼= F (B) und φ : F (A) → F (B) ein Isomorphismus. SeiN(A) ≤ F (A) eine
normale Untergruppe, erzeugt von der Menge {g2 : g ∈ F (A)}. Die Gruppe N(B) :=
φ(N(A)) ist normal in F (B) und von der Menge {h2 : h ∈ F (B)} erzeugt. Daraus folgt,
dass φ einen Isomorphismus

ψ : F (A)
/
N(A)

∼=→ F (B)
/
N(B)
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induziert. Es gilt aber

F (A)
/
N(A) ∼=

⊕
a∈A

Z/2Z sowie F (B)
/
N(B) ∼=

⊕
b∈B

Z/2Z ,

womit A und B dieselbe Kardinalität haben müssen.

2.3 Endlich präsentierte Gruppen

In diesem Abschnitt werden Gruppenpräsentierungen eingeführt – eine Methode, um
Gruppen anzugeben und zu erzeugen. Jede Gruppe lässt sich auf diese Weise als Quotient
einer freien Gruppe darstellen.

Definition 2.3.1 (Gruppenpräsentierungen). Sei S eine beliebige Menge und R
eine Menge von (nicht notwendigerweise reduzierten) Wörtern über S±.

1. Die von S mit Relationen R erzeugte Gruppe ist die Gruppe definiert durch
den folgenden Quotienten:

⟨S | R⟩ := F (S)
/
⟨R⟩�F (S)

.

Dabei sei ⟨R⟩�F (S) kleinste normale Untergruppe von F (S), die R enthält.

2. Ist G eine zu ⟨S | R⟩ isomorphe Gruppe, so sagen wir ⟨S | R⟩ ist eine
Präsentierung (oder Darstellung) von G.

3. Sind sowohl S als auch R endlich, so heißt G endlich präsentiert.

Es gibt Gruppen, von denen man weiß, dass es eine isomorphe, endlich präsentierte
Gruppe ⟨S | R⟩ gibt, aber für die man R und S nicht explizit angeben kann. Solche
Gruppen nennen wir manchmal endlich präsentierbar.

Bemerkung 2.3.2. Die Notation in Definition 2.3.1 ist leicht unpräzise, da wir für Wörter
in R auch nicht-reduzierte Formen erlauben müssen. Die freie Gruppe F (S) enthält aber
keine reduzierten Wörter. Genauer müssten wir die Menge R = {w : w ∈ R} betrachten
und folgenden Quotient nehmen:

⟨S | R⟩ = F (S)
/
⟨R⟩ .

Beispiel 2.3.3. Wir betrachten ein paar erste Beispiele von Gruppenpräsentierungen.

1. Für beliebiges n ∈ N ist die Gruppe Z/nZ ∼= ⟨x | xn⟩.
Um das einzusehen, betrachte φ : F (x) → Z/nZ , x 7→ 1. Dann gilt

⟨xn⟩�F (S) = ⟨xn⟩ = ker(φ).
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Weiter ist F (x) abelsch und φ surjektiv, also gilt mit dem Isomorphiesatz

⟨x | xn⟩ = F (x)
/
ker(φ) ∼= Z/nZ .

2. Es gilt Z2 ∼= ⟨x, y | xyx−1y−1⟩.

3. Sei G durch die Präsentierung ⟨x, y | xyx−1y−2, yxy−1x−2⟩ gegeben. Diese Gruppe
ist trivial (ÜA).

4. Die Diedergruppe Dn ist isomorph zu G := ⟨s, t | sn, t2, tst−1s⟩. Um dies zu
zeigen betrachte Dn erzeugt durch eine Spiegelung σ und eine Rotation ρ um
Winkel α = 2π/n. Definiere dann die Abbildung φ : Dn → G, σ 7→ t, ρ 7→ s und
rechne nach, dass diese Abbildung einen Isomorphismus induziert.

5. Es gibt auch Gruppen, die keine endlichen Präsentierungen besitzen. Die Gruppe
⟨s, t | [tnst−n, tmst−m] , n,m ∈ Z⟩ ist beispielsweise endlich erzeugt, aber nicht
endlich präsentierbar (Baumslag, 1961).

Bemerkung 2.3.4. Grundlegende aber schwierige Fragen über Gruppenpräsentierungen
sind beispielsweise folgende:

1. Das Isomorphieproblem: Ob eine gegebene Präsentierung G = ⟨S | R⟩ die triviale
Gruppe liefert (oder zu einer gegebenen anderen Gruppe H isomorph ist), ist im
Allgemeinen ein unentscheidbares Problem. D.h. es existiert kein Algorithmus, der
für beliebiges gegebenes S und R entscheidet, ob ⟨S | R⟩ = {1}.

2. Im Allgemeinen ist auch das Wortproblem in ⟨S | R⟩ nicht lösbar, d.h. man kann
nicht entscheiden, ob ein gegebenes Wort w über dem Alphabet S± das neutrale
Element in der Gruppe repräsentiert.

Allerdings gibt es für jedes der beiden Probleme auch wieder Klassen von Gruppen
innerhalb derer die Frage doch beantwortet werden kann. Wir werden im Laufe der
Vorlesung noch mehr dazu hören.
Weitere ganz natürliche Beispiele für endlich präsentierte Gruppen erhalten wir aus der
Algebraischen Topologie.

Beispiel 2.3.5 (Flächengruppen). Sei Sg eine geschlossene, orientierbare Fläche von
Geschlecht g. Dann ist die Fundamentalgruppe der Fläche gegeben durch folgende Prä-
sentierung:

Π1(Sg) = ⟨a1, b1 . . . , agbg |
g∏

i=1

[ai, bi]⟩.

Diese Gruppen werden auch Flächengruppen von Geschlecht g genannt. Die Erzeuger
ai bzw. bi entsprechen dabei den beiden erzeugenden Pfaden je Loch in der Fläche.
Siehe Abbildung 2.8 für eine Visualisierung der Erzeuger der Flächengruppen für kleines
Geschlecht.
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Abbildung 2.8: Visualisierung der Erzeuger von Flächengruppen von Geschlecht 1 und
2.

Wir fassen nun eine Eigenschaft von Gruppenpräsentierungen zusammen, die direkt aus
der Definition und der universellen Eigenschaft von freien Gruppen folgt.

Theorem 2.3.6 (Universelle Eigenschaft von Gruppenpräsentationen). Sei S eine
endliche Menge und R eine Menge von Wörtern über S±. Dann hat die Grup-
pe ⟨S | R⟩ folgende universelle Eigenschaft: Sei G eine beliebige Gruppe und
φ : S → G eine beliebige Abbildung. Schreibe φ∗ für die buchstabenweise kano-
nische Erweiterung von φ auf Wörter über S±. Wenn für alle r ∈ R gilt, dass
φ∗(r) das neutrale Element in G beschreibt, dann existiert genau ein Gruppenho-
momorphismus

φ : ⟨S | R⟩ → G mit φ ◦ ι = φ.

D.h. das folgende Diagramm kommutiert:

S G

⟨S | R⟩

φ

ι
φ!

Lernen wir nun ein paar erste prominente Klassen von Gruppen kennen, die direkt über
die Form ihrer Präsentierungen definiert sind.

Definition 2.3.7 (Coxetergruppe). Eine Coxetergruppe ist eine Gruppe, die eine
Präsentierung der Form

⟨s1, . . . , sn | (sisj)mij ∀i, j⟩

besitzt, wobei mij ∈ N≥2 ∪{∞} für alle i ̸= j und mii = 1 ∀i. Hier steht mij = ∞
dafür, dass si und sj nicht in Relation stehen.
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Wir können die mij in einer Matrix M = (mij)i,j=1,...,n, die sogenannte Coxetermatrix,
zusammenfassen. Auf der Diagonalen der Matrix stehen nach Konstruktion immer 1’en,
was der Relation s2i = 1 entspricht. Coxetergruppen sind also von Involutionen erzeugt.
Wir schreiben dann auch ΓM für die durch M definierte Coxetergruppe.

Beispiel 2.3.8 (Coxetergruppen). Historisch sind Coxetergruppen als Abstraktionen
von Spiegelungsgruppen in den drei klassischen Geometrien entstanden. Hier sind drei
erste konkrete Beispiele.

1. Diedergruppen Dn sind Coxetergruppen zur Coxetermatrix M =

(
1 n
n 1

)
.

2. Die Symmetrische Gruppe Sn entspricht der Coxetergruppe ΓMn−1 mit Coxeter-
matrix von Dimension (n− 1)× (n− 1):

Mn−1 =


1 3 2 · · · 2

3 1 3
. . . ...

2 3
. . . . . .

... . . . 3
2 · · · 3 1



3. Für M =

1 3 3
3 1 3
3 3 1

 ist ΓM die Symmetriegruppe der Parkettierung von R2 mit

gleichseitigen Dreiecken.

Insbesondere ist hier schon zu sehen, dass es sowohl endliche Coxetergruppen als auch
unendliche Coxetergruppen gibt. Man kann zeigen, dass die endlichen Coxetergruppen
sich immer als Spiegelungsgruppen einer n-Sphäre auffassen lassen. Die Lage bei den
unendlichen Coxetergruppen ist etwas komplizierter. Einige davon treten als Spiege-
lungsgruppen von euklidischen oder hyperbolischen Räumen auf.

Definition 2.3.9 (Artingruppen). Sei S eine Menge von Erzeugern und seien
si, sj ∈ S. Die Zopfrelation der Länge mij, auf den Erzeugern si und sj, notiert
mit b(mij), ist die Relation der Form:

sisjsisj · · · = sjsisjsi · · · ,

wobei die linke und die rechte Seite jeweils aus mi,j Buchstaben bestehen.
Eine Artingruppe ist eine Gruppe mit Präsentierung der folgenden Form:

⟨s1, . . . , sn | b(mij) ∀i, j⟩

Die Zopfrelation der Länge 3 lautet zum Beispiel sisjsi = sjsisj.
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Wir haben hier ein bisschen mit der Notation gemogelt. Streng genommen sind Relatio-
nen Worte über S±. Hier wollen wir aber eine Gleichheit von zwei gleich langen auf si
und sj alterierenden Worten betrachten. Wir teilen dazu für die Präsentierung aus der
freien Gruppe über S die kleinste Normale Untergruppe raus in der die Worte jeweils
gleich werden.
Aus den Definitionen erhalten wir: Artingruppen haben als Quotienten die Coxetergrup-
pen in denen die zusätzlichen Relationen sisi gelten für alle Erzeuger si. D.h. zusätzlich
zu den Zopfrelationen werden die Relationen sisi entsprechend den Konstanten mii her-
ausgeteilt.

Beispiel 2.3.10 (Beispiele für Artingruppen). Artingruppen interpolieren zwischen frei-
en Gruppen und freien abelschen Gruppen.

1. Freie Gruppen sind Artingruppen in denen alle Zopfrelationen b(mij) trivial sind,
d.h. es gilt mij = ∞ für alle i, j.

2. Freie abelsche Gruppen Zn sind Artingruppen. Setze dazu mii = ∞ für alle i und
mij = 2 für alle i ̸= j.

3. Rechtwinklige Artingruppen (RAAGs) sind Artingruppen mit mij ∈ {2,∞} für alle
i, j.

4. Alle Zopfgruppen Bn, n ≥ 1 sind Artingruppen. Die Elemente in Bn sind n ver-
knotete Stränge. Siehe Abbildung 2.9 (Mehr zur diagrammatischen Definition von
Artingruppen mündlich).

Abbildung 2.9: Visualisierung Zopfgruppen.

Im Rest des Kapitels gehen wir der Frage nach wie viele verschiedene endlich präsen-
tierte Gruppen es bis auf Isomorphie überhaupt geben kann. Eine Antwort liefert am
Ende Theorem 2.3.13.
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Proposition 2.3.11. Es gibt eine 2-erzeugte Gruppe G, die überabzählbar viele,
paarweise nicht-isomorphe normale Untergruppen hat.

Beweisskizze. Betrachte die Gruppe G := ⟨s, t | R⟩ für die Relationsmenge

R := {[[s, tnst−n], s] | n ∈ Z} ∪ {[[s, tnst−n], t] | n ∈ Z}.

Sei C die von der Menge {SC := [s, tnst−n] | n ∈ Z} erzeugte Untergruppe von G.
Dann ist C zentral in G, d.h. alle Elemente in C sind invariant unter Konjugation mit
s und t (und somit g ∈ G) nach Definition von R.
Man kann zeigen, dass C ∼=

⊕
Z Z. Diese Summe enthält überabzählbar viele Unter-

gruppen. Zum Beispiel ist für eine beliebige Teilmenge von Z die von Einheitsvektoren
zu dieser Teilmenge erzeugte Untergruppe in C enthalten. Jede solche Untergruppe ist
aber normal in G, weil sie Untergruppe der zentralen Untergruppe C in G ist.

Proposition 2.3.12. Sei G endlich erzeugt. Dann sind äquivalent:

1. G enthält überabzählbar viele verschiedene normale Untergruppen.

2. G hat überabzählbar viele, paarweise nicht-isomorphe Quotienten.

Beweis. Zu (1) ⇒ (2): Wir zeigen ¬(2) ⇒ ¬(1). Angenommen, G hat nur abzählbar
viele paarweise verschiedene Quotienten. Sei Q so ein Quotient. Weil G endlich erzeugt
ist, ist Q selbst abzählbar. Dann existieren nur abzählbar viele Homomorphismen φ :
G→Q. Diese abzählbar vielen Homomorphismen induzieren abzählbar viele normale
Untergruppen N = ker(ϕ) von G für die gilt G/N ∼= Q. Die Gruppe G kann nur
abzählbar viele verschiedene normale Untergruppen haben, wenn es nur abzählbar viele
verschiedene Quotienten gibt, was im Widerspruch zur 1. Aussage steht.
Zu (2) ⇒ (1): Zu jedem Quotienten Q von G gibt es eine natürliche Projektion φ :
G→Q mit Kern N := ker(φ). Für paarweise verschiedene Q,Q′ sind auch die normalen
Untergruppen N,N ′ in G verschieden. Somit folgt der Satz.

Theorem 2.3.13 (Anzahl 2-erzeugter Gruppen). Es gibt überabzählbar viele (Iso-
morphieklassen von) Gruppen, die von zwei Elementen erzeugt werden.

Beweis. Proposition 2.3.11 liefert uns eine Gruppe mit überabzählbar vielen norma-
len Untergruppen. Proposition 2.3.12 liefert dann zugehörige (verschiedene) Quotienten.
Also gilt der Satz.
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Korollar 2.3.14 (Endlich erzeugte, nicht endlich präsentierte Gruppen). Es gibt
überabzählbar viele (Isomorphieklassen von) endlich erzeugten Gruppen, die nicht
endlich präsentiert sind.

Beweis. Es existieren nur abzählbar viele endliche Präsentierungen von Gruppen, da
über jedem endlichen Erzeugendensystem nur abzählbar viele endliche Relationsmengen
existieren. Mit Theorem 2.3.13 folgt die Behauptung.
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