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2 Freie Gruppen und
Gruppenprasentierungen

Jede Gruppe lésst sich als Quotient einer freien Gruppe auffassen. Der Kern der natiirli-
chen Projektionsabbildung ist dann eine normale Untergruppe der freien Gruppe. In der
geometrischen Gruppentheorie untersuchen wir oft Gruppen, deren Kerne als normale
Hiille von endlich vielen definierenden Relationen, d.h. Wortern in der freien Gruppe,
auftauchen. Es gibt zahlreiche Klassen von Gruppen, die genau durch solche abstrakten
Beschreibungen mit Erzeugern und Relationen definiert sind.

In diesem Kapitel werden wir freie Gruppen sowie die Darstellung von Gruppen durch
Angabe von Erzeugern und Relationen kennen lernen.

2.1 Freie Gruppen

Dieses Kapitel fithrt in die Theorie der freien Gruppen ein. Zunéchst werden freie Grup-
pen iiber einem Alphabet direkt konstruiert und dann ihre universelle Eigenschaft nach-
gewiesen.

Definition 2.1.1 (Freie Gruppe). Eine Gruppe G heilt frei, wenn es ein Er-
zeugendensystem S in G gibt, sodass jedes nicht-leere reduzierte Wort in S* ein
nicht-triviales Element in G definiert. Wir sagen dann G ist frei von S erzeugt
und nennen S freies Erzeugendensystem von G.

Bemerkung 2.1.2. Sei S ein Erzeugendensystem einer Gruppe G. Dann ist S kein freies

Erzeugendensystem, wenn eine der beiden folgenden Eigenschaften erfiillt ist: Es existiert
ein s € S mit s7' € S, oder 1 € S. Vergleiche auch Ubungsaufgabe [6.2.2]

Um zu zeigen, dass es freie Gruppen gibt werden wir diese explizit konstruieren.

Definition 2.1.3 (Reduzierte Worter). Sei A eine beliebige Menge.

1. Ein Wort w iiber A ist eine endliche Folge von Elementen aus A, das heifst
w=yy - -y, mit y; € Afirallei=1,... n.

2. Sei A7t := {a7! | a € A} die Menge der formalen Inversen der Elemente
in A. Dann heift AT := AU A~! ein Alphabet. Worter iiber A* sind dann




Ausdriicke der Form
w:yil...y"‘iﬂ :Zl"'zna
mit y; € A und ¢; € {£1}, wobei y;' := y;, bzw. mit z; € A*.

3. Ein Wort iiber A* heikt reduziert, falls es kein Teilwort der Form aa~! bzw.
a'a enthilt.

4. Sei w = y' - -y ein Wort iiber A*. Dann nennen wir n die Linge von w
und schreiben |w| = n.

Bemerkung 2.1.4. Ist die Menge A in Definition [2.1.3] Teilmenge einer Gruppe G, so ist
fiir jedes a € A auch a™! ein Gruppenelement und wir setzen

At ={ateG|ac A}

Um aus der Menge der Worter iiber einem Alphabet eine Gruppe zu machen miissen
wir berticksichtigen, dass das Produkt eines Buchstaben mit seinem (formalen) Inversen
in der Gruppe trivial sein muss. Aus diesem Grund fithren wir jetzt Reduktionsschritte
und reduzierte Formen ein.

Definition 2.1.5 (Reduzierte Form eines Wortes). Sei A eine beliebige Menge
und w = y; - - - y,, ein Wort iiber A*, also y; € A fiir allei = 1,...,n.

1. Ein elementarer Reduktionsschritt von w besteht aus dem Loschen eines
Teilwortes des Form aa™! aus w, mit a € A*.

2. Eine Reduktion von w ist eine Folge elementarer Reduktionsschritte
W — Wy —> Wy —> +++ —> Wy,
sodass w,, ein reduziertes Wort ist.

3. Wir nennen das Ende w,, einer Reduktion eine reduzierte Form von w und
schreiben fiir diese w.

Obige Definition einer reduzierten Form ist nur dann hilfreich, wenn verschiedene Re-
duktionen eines gegebenen Wortes iibereinstimmen. Das wird in den folgenden Lemmata
nachgerechnet.
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Lemma 2.1.6 (Elementare Reduktionsschritte kommmutieren). Seien w — wy
und w — wq zwes elementare Reduktionsschritte von w. Dann existiert ein wg und
elementare Reduktionsschritte w; — wq fiiri = 1,2, sodass das folgende Diagramm
kommutiert:

w/O\w
\w/

Beweis. Seien \; : w — w; und Mg : w — wy die nach Annahme existierenden elementa-
ren Reduktionsschritte. Wir nehmen ohne Einschrankung an, dass A; von Ay verschieden
ist und betrachten zwei Falle:

1. Fall: Disjunkte Reduktionsschritte. D.h. die elementaren Reduktionsschritte \; fiir
i = 1,2 l6schen jeweils auftretende Teilworter der Form (y1, ) bzw. (yay; ) im Wort w
(mit y; € A%) deren Indizes sich nach Annahme nicht iiberlappen. Wir kénnen w daher
fiir geeignet gewihlte und mdoglicherweise leere Worter u; iiber A* wie folgt schreiben:

w = uy (y1yy ua(yayy us.

Dann gilt mit wgy := ujusug offensichtlich, dass A; o Ay = Ay 0 A; und das resultierende
Wort in beiden Fillen gleich wy ist.

2. Fall: Uberlappende Reduktionsschritte. Seien A\; und A\, so gegeben, dass die be-
troffenen Positionen an denen Loschungen stattfinden teilweise iiberlappen. Dann muss
bereits y; = y2 sein und das Wort w lasst sich schreiben als w = w;y1y; lyqu. Die
Reduktionsschritte sind somit gegeben durch

-1 Ao .
w = Ulyl(?h yg)u2 — wY1uz =: wy und

_ -1 A1 .
w = ul(ylyl )yzw — UYoUo = W].

Wegen y; = 9 ist auch wyw; =: wy und die Reduktionsschritte kommutieren. O

Lemma 2.1.7 (Eindeutige reduzierte Form). Sei w ein Wort in A. Dann besitzt
w ewne eindeutige reduzierte Form.

Beweis. Wir verfahren mittels Induktion iiber die Lange |w|des Wortes w.

Ist |w| = 0, so ist w das leere Wort, reduziert und es ist nichts zu zeigen. Ebenso sind
alle Worter der Lange 1 reduziert.

Sei jetzt |w| > 1 und seien w—w| — - -+ = w!/, und w—w} — - -+ — w), zwei Reduktio-
nen von w.

Nach Lemma [2.1.6] existiert nun eine gemeinsame Reduktion von w} und wf, d.h. ein
Wort w; in A* sowie elementare Reduktionsschritte w] — w; und w} — w;. Verglei-
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che Abbildung in der nun der Teil des Diagramms auf den Wértern w, w}, w} und
w; kommutiert.

Abbildung 2.1: Reduktionsdiagramm zum Beweis von Lemma m

Sei nun w; — wy — - -+ — wy eine Reduktion von w;. Diese ist nach Induktionshypo-
these eindeutig, da die Lénge |w; | echt kleiner ist als die Lénge |w|. Ebenso ist |w]| < |w)|
und |w{| < |w|. Also sind nach Induktionshypothese auch die Reduktionen von w| und
w eindeutig.

Es muss also gelten, dass w), = wy, weil beides die eindeutige Reduktion von w) be-
schreibt, und analog gilt wy, = w!’,. Also folgt w], = w! und auch w besitzt eine eindeutige
Reduktion. Insbesondere muss gelten n = k = m. O]

Definition 2.1.8 (Konstruktion einer freien Gruppe). Sei A eine beliebige Menge
und A~! die Menge der formalen Inversen. Setze

F(A) := {reduzierte Worter in A%}

und definiere eine Verkniipfung fiir u,w € F'(A) durch

w - u = W,
wobei wu die reduzierte Form des Wortes wu beschreibt, das durch Hintereinan-

derschreiben der Worter w und u entsteht.
Wir nennen F'(A) mit dieser Verkniipfung die freie Gruppe dber A.
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Die Verkniipfung in F'(A) entspricht, salopp gesagt, also
Hintereinanderschreiben+ Reduktion

von Worten iiber A%,

Statt F'(A) schreiben wir manchmal auch Fu|, da freie Gruppen iiber Mengen der glei-
chen Kardinalitét isomorph sind mit Isomorphismen, die durch beliebige Bijektionen auf
den Erzeugern in A induziert werden.

Zunachst miissen wir aber zeigen, dass es sich bei der Konstruktion in Definition 2.1.8
wirklich um eine freie Gruppe im Sinne von Definition handelt.

Theorem 2.1.9 (F(A) ist freie Gruppe). Fiir eine beliebige Menge A ist die
Menge F(A) eine frei von A erzeugt Gruppe beziglich der in Definition
definierten Verknipfung.

Beweis. Die Tatsache, dass wir es mit einer Verkniipfung in F'(A) zu tun haben folgt
aus Lemma und der Definition der Menge F'(A). Das leere Wort entspricht dem
neutralen Element und das Inverse eines Elementes yi'---y5* mit y; € A und ¢; €
{£1} ist gegeben durch y, <" - -y, !, da dann die Verkniipfung gerade dem leeren Wort
entspricht. Alle anderen Axiome einer Gruppe lassen sich leicht nachrechnen. Dass A ein
freies Erzeugendensystem ist folgt direkt aus der Definition von F/(A). n

Wir beweisen nun eine charakterisierende, universelle Eigenschaft freier Gruppen.

Theorem 2.1.10 (Universelle Eigenschaft freier Gruppen). Sei F' eine Gruppe
mit Erzeugendensystem A C F. Die Gruppe F ist genau dann frei von A erzeugt,
wenn I folgende universelle Eigenschaft erfiillt: Fiir jede Gruppe G und jede Ab-
bildung ® : A — G ein eindeutiger Homomorphismus ® : F — G existiert, sodass
folgendes Diagramm kommutiert.

A——F
& l«f!
G.

Dabei ist v die Inklusionsabbildung von A nach F'.

Beweis. ,=": Sei zundchst F' frei von A erzeugt und sei ® : A — G eine gegebene
Abbildung. Jedes Element g € F' ist ein reduziertes Wort iiber A* der Form

g=s; 5", mits;, € Aundg; € {1, -1}

in )
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Definiere die Abbildung ®: F — G durch
D(g) = ((s53,))7 -+ (P(s1,))™" - (2.1.1)

Es lasst sich leicht nachrechnen, dass <T>~tatséich1ich ein Homomorphismus ist. Verglei-
che Ubungsaufgabe . Aufserdem ist @ gerade so definiert, dass das Diagramm kom-
mutiert. Da aber jeder Homomorphismus, fiir den das Diagramm kommutiert, die Gleich-
hung in erfiillen muss, ist ® auch eindeutig.

,<" Sei nun F' eine Gruppe, die die universelle Eigenschaft bzgl. eines Erzeugenden-
systems A erfiillt. Sei G := F(A) die freie Gruppe iiber A. Wir wollen zeigen, dass
G = F gilt. Definiere hierzu eine Abbildung ® : A — G durch ®(a) := a fiir alle a € A.
Da die universelle Eigenschaft gilt, erweitert ® eindeutig zu einem Homomorphismus
. F—-G=F(A).

Sei nun w ein nicht-leeres, reduziertes Wort iiber A*. Dann beschreibt w ein nicht-
triviales Gruppenelement in G. Es gibt somit ein ¢ € F mit ®(g) = w € G. Da ®
ein Homomorphismus ist, folgt, dass auch g in F' nicht trivial sein kann und somit
ker(®) = 14. Da ® nach Konstruktion surjektiv ist, folgt die Behauptung. H

2.2 Freie Gruppen und Baume

Im weiteren werden wir ein paar Eigenschaften und Charakterisierungen freier Gruppen
kennen lernen, die alle mit Baumen, also kreisfreien Graphen, zu tun haben.

Theorem 2.2.1 (Cayleygraphen freier Gruppen). Ist G frei erzeugt von S, dann
ist Cay(G, S) ein Baum.

Beweis. Da G frei von S erzeugt ist, entsprechen die Elemente in G' gerade den re-
duzierten Wortern iiber S* und insbesondere ist das neutrale Elemente 1 nicht in S
enthalten. Somit folgt direkt, dass I' := Cay(G, S) zusammenhéngend und schleifenfrei
ist. Es bleibt also noch zu zeigen, dass keine Kreise in C—ay>(G, S) existieren.

Wir argumentieren mit Widerspruch. Angenommen, es existiert ein Kreis in I'. Dann
existieren Gruppenelemente gg, g1, ..., g, € G, und Kanten e; im Cayleygraph mit

d(e;) =49, gir1} Vi=0,...,n— 1, sowie d(e,) = {gn, g0}
Definiere dann
55 = gj_lgjﬂ fiir alle 7 =0,...,n— 1, sowie s, := g,:lgo.

Nach Definition des Cayleygraphen C—ay)(G, S) sind alle s; € SUS™L.

Wir zeigen jetzt (mit Widerspruch), dass das Wort sq - - - s, reduziert ist.
Angenommen, das Wort wire nicht reduziert und beispielsweise so = s;'. Dann gilt
95 g1 = g5 'g1 womit folgt, dass go = g». Falls dabei gy = g1 = ¢» gilt, sind die beiden
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entsprechenden Kanten Schleifen, also so = s; = e. Ist aber g; # g9, so ist Kante ¢y von
Kante e, verschieden und die ersten beiden Kanten bilden eine Doppelkante. Also gilt
1 € S oder es existiert ein s € S mit s7! € S, was einen Widerspruch dazu darstellt,
dass G frei von S erzeugt ist. Vergleiche dazu Bemerkung [2.1.2] Somit muss das oben
konstruierte Wort S0 Sn reduziert sein.

Wenn ein Kreis in Cay (G, S) existiert, erhalten wir also ein reduziertes Wort s . .. s, in
G welches das triviale Element beschreibt. Insbesondere kann G nicht frei erzeugt sein
von S. m

Definition 2.2.2 (Reduziertes Erzeugendensystem). Ein Erzeugendensystem S
heifst reduziert, wenn fiir alle s,t € S gilt, dass s -t # e ist.

Theorem 2.2.3 (Umkehrung von Theorem [2.2.1). Sei G eine Gruppe und S ein

Erzeugendensystem. Ist (Ta};(G, S) ein gerichteter Baum, dann ist S ein freies
(insbesondere reduziertes) Erzeugendensystem und G ist frei.

Beweis. Es geniigt zu zeigen, dass G = Fg gilt. Aus der universellen Eigenschaft freier
Gruppen erhalten wir einen Homomorphismus ¢ : Fg — G mit ¢|g = id. Da G von S
erzeugt ist, ist ¢ surjektiv. Es bleibt also zu zeigen, dass ¢ injektiv, also ein Isomorphis-
mus ist.
Angenommen, ¢ sei nicht injektiv. Dann existiert ein reduziertes Wort s; - -- s, in Fg
mit s; € SUS™! und

o(s1-+-8,) = eg.

Da C—a};(G, S) ein Baum ist, existieren keine Schleifen und keine Doppelkanten im Cay-
leygraphen. Das bedeutet 1 ¢ S und fiir alle s € S gilt s™* ¢ S. Es folgt fiir alle s,t € S,
dass s-t # 1 gilt, also dass S reduziert ist. Da ¢|g injektiv ist und 1 ¢ S gilt, folgt
n >_2>f1'ir das Wort s; - - - s,,. Das reduzierte Wort definiert also einen geschlossenen Pfad
in Cay(G, S) wie folgt: Setze

go = 1 und gi = gk_lgo(si) Yk = ]_, oo,

Es ist insbesondere dann g, = ¢g,—19(8,) = @(s1- - $») = 1 = go. Ist dieser geschlossene
Kantenzug ein Kreis, sind wir fertig. Andernfalls gibt es & # [ mod n mit k£ < [ und
9k = 41.

1. Fall: Sei I = k + 1. Dann existiert eine Schleife in C—ay>(G, S) und 1g € S — was im
Widerspruch zur Reduziertheit von S steht.

2. Fall: Sei | = k + 2. Dann gilt gx = ggro und gx = grp(Sgr1Sk42). Daraus folgt
Sg+1Sk+2 = 1 und wir sehen eine Doppelkante, was ebenfalls nicht sein kann wegen der
Reduziertheit von S.

3. Fall: Sei l > k 4 2. Dann gilt

Gk = g1 = Gi-190(51) = -+ = Gr(SkSk+1 - 51),
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wobei $gSki1 -+, ein reduziertes Wort der Lénge (I — k) < n ist. Dann konnen wir
$1-+-- 8, durch s - - - s; ersetzen und erhalten induktiv einen kiirzeren Kreis oder wieder
einen der Falle 1 und 2.

In jedem Fall ergibt sich ein Widerspruch und es folgt, dass ¢ injektiv ist. Insbesondere
gilt G = F(S). Damit ist S freies Erzeugendensystem fiir G. O

Ziel ist es nun Theorem [2.2.4] zu beweisen und freie Gruppen mittels ihren Wirkungen
auf Baumen zu charakterisieren.

Theorem 2.2.4 (Charakterisierung freier Gruppen via Wirkung auf Béumen).
Eine Gruppe ist genau dann frei, wenn sie frei auf einem Baum wirkt.

Fiir den Beweis dieses Theorems benotigen wir weitere Hilfsmittel, die jetzt eingefiihrt
werden.

Definition 2.2.5 (Untergraphen und Béume). Ein Untergraph eines Graphen
X = (V, E) ist ein Graph (V/, E') mit V' C V und E' C E. Ein Unterbaum ist
ein Untergraph, der selbst ein Baum ist.

Definition 2.2.6 (Fundamentalbdume). Sei G eine Gruppe und sei X = (V, F)
ein zusammenhéangender simplizialer Graph auf dem G wirke. Ein Fundamental-
baum fiir diese Wirkung ist ein Unterbaum von X, der genau eine Ecke aus jeder
G-Bahn in V' enthélt.

Beispiel 2.2.7. Die Gruppe Z wirkt auf dem Graphen X = (V, E) in Abbildung
durch Links- bzw. Rechtstranslation. Hierbei sind a,b und ¢ Reprisentanten der 3 dis-
junkten Bahnen in V' (X) und der auf a, b, c aufgespannte Untergraph ein Fundamental-
baum dieser Wirkung.

Abbildung 2.2: Ein Graph mit markiertem Fundamentalbaum fiir die Z-Wirkung durch
Links- /Rechtstranslation.

Proposition 2.2.8 (Existenz von Fundamentalbdumen). Sei X ein nicht-leerer,
zusammenhdangender, simplizialer Graph. Dann besitzt jede Wirkung G ~ X einen
Fundamentalbaum.
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Beweis. Sei G eine Gruppe, die auf einem solchen Graphen X wirkt. Bezeichne mit
T die Menge aller nicht-leeren Unterbaume von X, die aus jeder Bahn hochstens eine
Ecke enthalten. Diese Menge ist nicht leer, da beispielsweise jede Ecke (aufgefasst als
Graph) in T ist. Aukerdem ist T durch die Teilbaum-Relation partiell geordnet, d.h.
fir T,7" € Tg ist T < T', wenn T Unterbaum von 7" ist.

Jede totalgeordnete Kette in Ty hat eine obere Schranke, die Vereinigung aller Ket-
tenelemente. Mit dem Zornschen Lemma folgt, dass mindestens ein maximales Element
Ty # 9 in T existiert.

Wir wollen nun Zeigen, dass ein solches maximales Element 7j ein Fundamentalbaum
fir G ~ X ist und argumentieren mit Widerspruch. Angenommen, T} sei kein Funda-
mentalbaum fiir G ~ X. Dann existiert Ecke v € V', sodass V(Ty) N G.v = @.

Beh: Wir kénnen annehmen, dass v einen Nachbarn v” in Tj besitzt. Wére ein solche
Wahl nicht moglich, so wihle eine feste Ecke u € Tj und einen Pfad p : u ~ v in X. Sei
v" die erste Ecke auf p, die nicht in Tj ist. Diese Situation ist in Abbildung [2.3| skizziert.
Ist nun G/ NV(T,) = &, dann kénnen wir v durch v’ ersetzen, da dieses die gesuchte
Eigenschaft hat.

Falls ein ¢ € G existiert, sodass g.v’" eine Ecke von Ty ist betrachte den Teilpfad p’ :
v' ~ v. Dessen Bild ¢g.p' : g.v' ~ gv verbindet eine Ecke gv’ von T, mit einer Ecke
gv € G.v, die nicht in T, liegt (da nach Annahme V(Tp) N G.v = @). Der Pfad p/
ist kiirzer als der Pfad p. Iteriere den Prozess und finde schlielich eine Ecke mit der
gesuchten Eigenschaft. Es gilt die Behauptung.

Wir haben also eine Ecke v ¢ Ty mit V(Ty) N G.v = @, die einen Nachbarn v” € Tj
hat. D.h. es existiert eine Kante e mit d(e) = {v,v”} und v" € Ty. Fiige diese Kante
e und ihre Ecke aufserhalb zum Baum 7§ hinzu. Der so entstandene grofere Baum 7T
ist in T und hat Tj als echten Unterbaum. Also gilt T < T, was im Widerspruch zur
Maximalitat von Ty in T steht. O

Abbildung 2.3: Ein Weg von u € Tj nach v, mit v’ erste Ecke, die nicht in Tj liegt.

Definition 2.2.9 (Wesentliche Kanten). Sei 7" ein Baum und G eine Gruppe mit
freier Wirkung auf 7. Weiter sei Tj ein Fundamentalbaum dieser Wirkung.
Eine Kante e in T heifit wesentlich, wenn e ¢ E(Ty), aber 6(e) NV (Ty) # & gilt.

Beispiel 2.2.10. In Abbildung sind die Kanten e; und ey wesentlich. Sie gehoren
nicht zu den Kanten des Fundamentalbaums 7j, haben aber je eine Ecke, die in T} liegt.

Wir kénnen jetzt Theorem beweisen.
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Abbildung 2.4: Wesentliche Kanten e; und ey fiir einen Fundamentalbaum 7j fiir die

Wirkung Z ~ X aus Beispiel 2.2.7

Beweis von Theorem |2.2.4). .= Ist G frei von S erzeugt, so ist der Cayleygraph CTa};(G, S) =:
T nach Theorem ein Baum, auf dem G wirkt.

Es bleibt also noch zu zeigen, dass diese Wirkung frei ist. Wegen Theorem [I.3.26] geniigt

es nachzuv@en, dass S keine Elemente der Ordnung 2 besitzt. Beachte, dass in unserer
Situation Cay(G,S) = Cay(G, S) mit vergessener Orientierung gilt.

Wir argumentieren mit Widerspruch und nehmen an, dass es ein Element s € S mit

s? = 1 gibt. Dann ist insbesondere s = s7.

Betrachte die Abbildung ¢ : S — (Z,+) mit ¢(s) = p(s7!) := 1 fiir alle s € S.
Mit der universellen Eigenschaft freier Gruppen aus Theorem [2.1.10] erhalten wir einen
eindeutigen Homomorphismus @ : G — Z fiir den gilt p(:(s)?) = 0 und folgendes

Diagramm kommutiert:

(Z,+)

Es folgt 0 =p(s-s7!) =p(s) + p(s™!) = 2, also ergibt sich ein Widerspruch.

,<="1 Sei nun eine freie Wirkung von G auf einem Baum gegeben. Wir werden mit Hilfe
von Fundamentalbdumen ein freies Erzeugendendensystem S fiir G konstruieren.

Dazu nutzen wir, dass nach Proposition [2.2.8] ein Fundamentalbaum fiir diese Wirkung
existiert. Fixiere einen solchen Baum 7Tj. Die zentrale Idee ist, jede Kopie von T unter der
G-Wirkung auf eine Ecke zu ,schrumpfen” und so einen Cayleygraphen und schlieflich
ein freies Erzeugendensystem zu erhalten.

Sei e = {u,v} eine wesentliche Kante in 7' mit u € Ty und v ¢ Ty. Da Tj ein Funda-
mentalbaum ist, existiert ein Element g. € G, sodass g_'v eine Ecke von Ty ist, bzw.
sodass v Ecke von ¢.Tj ist. Dieses Element g, ist eindeutig, denn G.v trifft den Baum
T, in genau einer Ecke und G ~ T ist frei.

Wir definieren nun eine Kandidatenmenge fiir Erzeugendensystem. Setze dazu

S = {ge in G : e ist wesentliche Kante von T" bzgl. Ty}.

Die Menge S hat folgende Eigenschaften:

1. Nach der Definition von wesentlich gilt 1 ¢ S.
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2. Es existieren keine Elemente der Ordnung 2 in S , da G frei wirkt und jedes Ele-
ment endlicher Ordnung einen Fixpunkt besitzt. (Vergleiche die Ubungsaufgaben
zu diesem Kapitel).

3. Sind e, ¢/ wesentliche Kanten mit g, = g so gilt e = ¢/. Wire dem nicht so wiirden
zwei verschiedene Kanten zwischen Ty und ¢.7y = ¢oT, existieren. Dies liefert
einen Kreis T was aber nicht sein kann, da 7" ein Baum ist.

4. Ist g € S so ist auch g lin S. Sei zum Beispiel g = g. das element zur wesentliche
Kante e dann gilt (g.) ™" = g(4-1) und somit ist auch g~'e eine wesentliche Kante.

Wir konnen also S schreiben als disjunkte Vereinigung einer Teilmenge S und der Menge
ihrer Inversen S—!. Mit obigen Eigenschaften ist SN S~ =@, SUS™ = S und

1|~ 1
|S| = 5 ‘S‘ =3" #wesentliche Kanten von Tj in 7.

Wir zeigen nun, dass S die Gruppe G erzeugt. Sei dazu Sei ¢ € G und u eine fest
gewdhlte Ecke in T. Da T' zusammenhéngend ist, existiert ein (kiirzester) Pfad p von u
nach gu. Da die Eckenmenge von T sich schreiben lédsst als Vereinigung iiber die Orbiten
von Ecken in T konnen wir folgern, dass Elemente g, ..., g, in G existieren, sodass der
Pfad n+1 Kopien g;7} von T durchlduft. Dabei kénnen wir go = 1 sowie g, = g wahlen.
Da zudem 7} ein Fundamentalbaum ist, gilt fiir alle j = 0,...,n—1, dass g;7y # g,+170
ist und die Kopien g;7y und g;17, jeweils durch eine Kante e; des Pfades p verbunden
sind.

Nach Konstruktion ist daher gj_lej eine wesentliche Kante und s; := g; lng liegt in

S. Nach Konstruktion von S ist also entweder s; oder sein inverses in S fiir alle j. Das
Element g lasst sich nun schreiben als

9=00=00"9n =90 01 972" * G10n = S051 " * Sn_1.

=S50 =51 Sn—1

Also ist S und wegen S=5 | ] S7! und auch S ein Erzeugendensystem von G.

Es bleibt zu zeigen, dass S die Gruppe G frei erzeugt. Kontrahiere fiir alle ¢ € G den
Unterbaum ¢7j zu einer Ecke. Kanten zwischen g7 und anderen Unterbaumen werden
zu kanten zwischen den resultierenden Ecken. Als Ergebnis erhélt man den Graphen
Cay(G, S). Um nun zu zeigen, dass dieser Graph ein Baum ist reicht es, Dank Theo-
rem , nachzurechnen, dass Cay(G, S) keine Kreise enthélt.

Wir argumentieren mit Widerspruch und nehmen an es existiere ein Zykel go, ..., gn_1
in Cay(G, S), also g, = go-
Dann definiere fiir alle j = 0,...,n — 1 die Elemente s; := gj’lgjﬂ. Wir kénnen S o.E.

so wahlen, dass s; € S liegt. Sei weiter e; eine wesentliche Kante in T" zwischen Tj und
s;i1p fir alle 5 =0,...,n— 1.

Da jedes Translat von Tj ein zusammenhangender Teilbaum von 7' ist lassen sich die
beiden Ecken der Kanten gje; und g;s;ej11 = gjr1€j41, die in g;417p liegen, durch einen
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eindeutigen Weg in g¢;117, verbinden. Vergleiche dazu Abbildung [2.5). Durch Verketten
dieser Pfade lésst sich ein Kreis in T" konstruieren der von Ty {iber T, T, . . . zuriick nach
gnTo = Ty fithrt. Es ergibt sich ein Widerspruch dazu, dass T' ein Baum ist. Es kann also
Kreise dieser Form nicht geben. Es folgt, dass Cay(G,S) ebenfalls keine Kreise enthélt
und S die Gruppe G frei erzeugt. O

Abbildung 2.5: Kopien des Fundamentalbaums.

Im Folgenden sehen wir Anwendungen von Theorem und nutzen Cayleygraphen,
um algebraische Eigenschaften zu zeigen.

Korollar 2.2.11 (Satz von Nielsen-Schreier). Untergruppen freier Gruppen sind
frei.

Beweis. Sei F freie Gruppe, G < F. Mit Theorem wirkt F' dann frei auf einem
Baum 7. Dann wirkt aber auch G frei auf 7' und somit ist G mit Theorem 2.2.4] frei. [

Der Index einer Untergruppe G in einer Gruppe F' ist die Anzahl an Nebenklassen von
G in F. Wir schreiben |F : G|.

Korollar 2.2.12 (Quantitative Version des Satzes von Nielsen-Schreier). Sei F'
eine frere Gruppe von Rang n und sei G < F' eine Untergruppe von Index k € N.
Dann ist G frei und von Rang k(n — 1) 4+ 1. Insbesondere sind also Untergruppen
von endlichem Index in freien Gruppen von endlichem Rang endlich erzeugt.

Beweis. Sei S freies Erzeugendensystem von F' und schreibe I' := Cay(F, S). Also ist I’
ein Baum und G und F' wirken frei auf I". Aus dem Beweis von [2.2.4] sehen wir, dass
Rang(G) = 3 - E gilt, wobei E die Anzahl der wesentlichen Kanten eines Fundamental-
baums Ty ist. Aus |F' : G| = k folgt, dass Ty genau k Ecken hat, da der Index gerade
der Anzahl der Nebenklassen (bzw. disjunkten Orbiten) der Gruppenwirkung entspricht.
Wir schreiben nun dr(v) fiir den Eckengrad von v in I'. Es gilt fiir alle v € V(I"), dass

dr(v) =2-|S|=2-n
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und wir erhalten

> dy(v) =k-2n. (2.2.1)

UEV(T())

Andererseits ist Tp endlich und besitzt (k — 1) Kanten, die in Gleichung (2.2.1)) alle
doppelt gezéhlt werden. Somit ist

k2n= Y dr(v)= 2(k—1) + L
veV (To) 2.Kanten in T,  Kanten von Tp nach I'\Tp
und es folgt die Behauptung: Rang(G) = 3E =k-n— (k—1) =k(n —1) + 1. O

Korollar 2.2.13 (freie Untergruppen von beliebigem Rang). Sei F' eine freie
Gruppe von Rang m > 2. Dann existiert fir alle n € N mit n > 2 eine (freie)
Untergruppe G von F mit Rang(G) = n.

Zum Beweis sieche Ubungsaufgabe [6.2.1]
Wir lernen nun ein wichtiges Werkzeug kennen mit dessen Hilfe wir freue (Unter-
)Gruppen identifizieren konnen.

Lemma 2.2.14 (Ping-Pong Lemma). Sei G eine von S := {a, b} erzeugte Gruppe,
die auf einer Menge X wirkt. Wenn disjunkte Teilmengen A, B C X existieren,
sodass fir alle k € Z\ {0} gilt:

a"(B) C A und b*(A) C B,

dann ist G frei von S erzeugt.

Beweis. Wir miissen zeigen, dass kein nicht-leeres, reduziertes Wort in G das triviale
Element 1 reprasentiert.

Sei dazu zunéchst ein Element g € G gegeben durch ein Wort der Form a*b*a* - - - b*a™,
wobei wir * stellvertretend fiir einen beliebigen Exponenten in Z \ {0} schreiben. Das
Wort beginnt und endet also nach Annahme mit einer nicht-trivialen Potenz von a.
Dann ist mit b*(A) C B und a*(B) C A das Bild g(B) von B unter g Teilmenge von A.
Da BN A = @ kann also g nicht gleich der Identitéat sein.

Jedes andere Gruppenelement ¢’ € G ist konjugiert zu einem g obiger Form. Weil die
Konjugationsklasse des trivialen Elementes nur genau das triviale Element enthélt folgt
die Behauptung fiir beliebiges ¢ in G.

Also beschreiben alle nicht-trivialen, reduzierten Worte auch nicht-triviale Gruppenele-
mente und G ist frei. O

Eine Erklarung fiir den Namen des obigen Lemmas ist in Abbildung zu finden.
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1 (A)

4 a'bdp)

Abbildung 2.6: Visualisierung des Ping-Pong Lemmas.

Beispiel 2.2.15. Das Ping-Pong Lemma kann genutzt werden, um freie Untergruppen
in anderen Gruppen zu finden. Als Beispiel konstruieren wir eine freie Untergruppe in

SL(2,7) = {(Z Z) € 722, ad—bc:det(---)zl}.

1 2 10
M1 = (O 1) undMg = (2 1)

Wir rechnen nun nach, dass die von M; und Ms erzeugte Untergruppe G von SL(2,7)
frei von Rang 2 ist: Wir spielen Ping-Pong!

Betrachte die lineare Wirkung SL(2,R) ~ R? die definiert ist durch das iibliche
Matrix-Vektor Produkt. Eine Matrix M bildet dabei einen Vektor (;‘) wie folgt ab:

() ()- (i)
Y Y Mo1T + Moy

Dann gilt fiir alle n € Z\ {0} und fiir alle (;) € R?, dass

()6 )0-()

Definiere Teilmengen A und B in R? wie in Abbildung dargestellt:

Setze

4 {(y) e R [ Jal > Iyl
B - {(y) ER? [ |y| > [al}
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Esist AN B = &. Sei (z) € B. Dann gilt mit der Dreiecksungleichung

|+ 2ny| > |2ny| — |z|

und fiir n > 1 und |y| > |z| gilt

2ny| — || > |2y — |yl = [yl

Somit ist mit obiger Formel der Vektor M - (;) = (’”+y2"y) in der Menge A enthalten,

wenn (z) € B gilt. Also gilt allgemeiner M{* - B C A fiir alle n # 0.
Analog rechnet man nach, dass MJ - A C B fiir beliebiges n # 0 gilt.
Mit dem Ping-Pong Lemma [2.2.14] folgt die Behauptung.

Abbildung 2.7: Die Mengen A und B aus Beispiel [2.2.15 zum Ping-Pong Lemma.

Theorem 2.2.16 (Rang ist wohldefiniert). Zwei freie Gruppen F(A) und F(B)
sind genau dann isomorph, wenn |A| = |B].

Beweis. Sei zunéchst |A| = |B|. Dann existiert eine Bijektion ¢ : A — B, die mit der
universellen Eigenschaft freier Gruppen eindeutig zu einem Homomorphismus

%: F(A) — F(B)

erweitert. Da A und B Erzeugendensysteme sind und ¢ eine Umkehrabbildung ¢!
besitzt, ist ¥ ein Isomorphismus.

Sei jetzt F(A) = F(B)und ¢ : F(A) — F(B) ein Isomorphismus. Sei N(A) < F(A) eine
normale Untergruppe, erzeugt von der Menge {¢g? : ¢g € F(A)}. Die Gruppe N(B) :=
©(N(A)) ist normal in F(B) und von der Menge {h? : h € F(B)} erzeugt. Daraus folgt,
dass ¢ einen Isomorphismus

e F(A)/N(A) = F(B)/N(B)
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induziert. Es gilt aber
F(A)/N(A) = @Z/QZ sowie F(B)/N(B) o @Z/ZZ7
acA beB

womit A und B dieselbe Kardinalitdt haben miissen. O

2.3 Endlich prasentierte Gruppen

In diesem Abschnitt werden Gruppenprasentierungen eingefithrt — eine Methode, um
Gruppen anzugeben und zu erzeugen. Jede Gruppe lasst sich auf diese Weise als Quotient
einer freien Gruppe darstellen.

Definition 2.3.1 (Gruppenprisentierungen). Sei S eine beliebige Menge und R
eine Menge von (nicht notwendigerweise reduzierten) Wortern iiber S*.

1. Die von S mit Relationen R erzeugte Gruppe ist die Gruppe definiert durch
den folgenden Quotienten:

= F
(S| R) = (5)/<R>;(s).
Dabei sei (R)F s kleinste normale Untergruppe von F'(S), die R enthilt.

2. Ist G eine zu (S | R) isomorphe Gruppe, so sagen wir (S | R) ist eine
Prasentierung (oder Darstellung) von G.

3. Sind sowohl S als auch R endlich, so heiltt G endlich prdsentiert.

7

Es gibt Gruppen, von denen man weifs, dass es eine isomorphe, endlich présentierte
Gruppe (S | R) gibt, aber fiir die man R und S nicht explizit angeben kann. Solche
Gruppen nennen wir manchmal endlich prasentierbar.

Bemerkung 2.3.2. Die Notation in Definition [2.3.1]ist leicht unprézise, da wir fiir Worter
in R auch nicht-reduzierte Formen erlauben miissen. Die freie Gruppe F'(S) enthélt aber
keine reduzierten Worter. Genauer miissten wir die Menge R = {w : w € R} betrachten
und folgenden Quotient nehmen:

(S| R) = F(S)/@.

Beispiel 2.3.3. Wir betrachten ein paar erste Beispiele von Gruppenprésentierungen.

1. Fiir beliebiges n € N ist die Gruppe Z/y,7, = (x| ™).
Um das einzusehen, betrachte ¢ : F(2) — Z/p7, x + 1. Dann gilt

<95n>}<]7(3) = (z") = ker(p).
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Weiter ist F'(z) abelsch und ¢ surjektiv, also gilt mit dem Isomorphiesatz
(z|z") = F(x)/ker(go) ~Z/n7,.

2. Es gilt Z2 = (x,y | zyx~ty~t).

3. Sei G durch die Prisentierung (z,y | zyz 'y =2, yxy 'z~2) gegeben. Diese Gruppe

ist trivial (UA).

4. Die Diedergruppe D,, ist isomorph zu G := (s,t | s", t?, tst™'s). Um dies zu
zeigen betrachte D, erzeugt durch eine Spiegelung o und eine Rotation p um
Winkel o = 27 /n. Definiere dann die Abbildung ¢ : D,, — G, o0 —t, p— s und
rechne nach, dass diese Abbildung einen Isomorphismus induziert.

5. Es gibt auch Gruppen, die keine endlichen Prasentierungen besitzen. Die Gruppe
(s, t | [t"st™™, t™st™™],n,m € Z) ist beispielsweise endlich erzeugt, aber nicht
endlich prasentierbar (Baumslag, 1961).

Bemerkung 2.3.4. Grundlegende aber schwierige Fragen iiber Gruppenprasentierungen
sind beispielsweise folgende:

1. Das Isomorphieproblem: Ob eine gegebene Prasentierung G' = (S | R) die triviale
Gruppe liefert (oder zu einer gegebenen anderen Gruppe H isomorph ist), ist im
Allgemeinen ein unentscheidbares Problem. D.h. es existiert kein Algorithmus, der

fiir beliebiges gegebenes S und R entscheidet, ob (S| R) = {1}.

2. Im Allgemeinen ist auch das Wortproblem in (S | R) nicht l6sbar, d.h. man kann
nicht entscheiden, ob ein gegebenes Wort w iiber dem Alphabet S* das neutrale
Element in der Gruppe représentiert.

Allerdings gibt es fiir jedes der beiden Probleme auch wieder Klassen von Gruppen
innerhalb derer die Frage doch beantwortet werden kann. Wir werden im Laufe der
Vorlesung noch mehr dazu héren.

Weitere ganz natiirliche Beispiele fiir endlich prasentierte Gruppen erhalten wir aus der
Algebraischen Topologie.

Beispiel 2.3.5 (Flachengruppen). Sei S, eine geschlossene, orientierbare Fléche von
Geschlecht g. Dann ist die Fundamentalgruppe der Fliache gegeben durch folgende Pra-
sentierung:

g
Hl(Sg) = <a1,b1 ce ,agbg | H[a,,bz])
=1

Diese Gruppen werden auch Flachengruppen von Geschlecht g genannt. Die Erzeuger
a; bzw. b; entsprechen dabei den beiden erzeugenden Pfaden je Loch in der Fléche.
Siehe Abbildung [2.8|fiir eine Visualisierung der Erzeuger der Fléchengruppen fiir kleines
Geschlecht.
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Abbildung 2.8: Visualisierung der Erzeuger von Flichengruppen von Geschlecht 1 und
2.

Wir fassen nun eine Eigenschaft von Gruppenpréasentierungen zusammen, die direkt aus
der Definition und der universellen Eigenschaft von freien Gruppen folgt.

Theorem 2.3.6 (Universelle Eigenschaft von Gruppenpréisentationen). Sei S eine
endliche Menge und R eine Menge von Wértern iiber S*. Dann hat die Grup-
pe (S | R) folgende universelle Figenschaft: Sei G eine beliebige Gruppe und
¢ S = G eine beliebige Abbildung. Schreibe ¢* fiir die buchstabenweise kano-
nische Erweiterung von @ auf Waorter tiber S*. Wenn fiir alle r € R gilt, dass
©*(r) das neutrale Element in G beschreibt, dann existiert genau ein Gruppenho-
momorphismus
P:(S|R) =G mitpoL=o.

D.h. das folgende Diagramm kommutiert:

Lernen wir nun ein paar erste prominente Klassen von Gruppen kennen, die direkt iiber
die Form ihrer Présentierungen definiert sind.

Definition 2.3.7 (Coxetergruppe). Eine Cozetergruppe ist eine Gruppe, die eine
Prasentierung der Form

<Sl7 -1 | (Sisj)mij \V/ljj>

besitzt, wobei m;; € N>o U {oo} fiir alle ¢ # j und m;; = 1 Vi. Hier steht m;; = 0o
dafiir, dass s; und s; nicht in Relation stehen.
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Wir kénnen die m;; in einer Matrix M = (my;); j=1,..n, die sogenannte Cozetermatriz,
zusammenfassen. Auf der Diagonalen der Matrix stehen nach Konstruktion immer 1’en,
was der Relation s? = 1 entspricht. Coxetergruppen sind also von Involutionen erzeugt.
Wir schreiben dann auch I'y; fiir die durch M definierte Coxetergruppe.

Beispiel 2.3.8 (Coxetergruppen). Historisch sind Coxetergruppen als Abstraktionen
von Spiegelungsgruppen in den drei klassischen Geometrien entstanden. Hier sind drei
erste konkrete Beispiele.

. . . 1
1. Diedergruppen D,, sind Coxetergruppen zur Coxetermatrix M = <n 711)

2. Die Symmetrische Gruppe §S,, entspricht der Coxetergruppe I'y;, , mit Coxeter-
matrix von Dimension (n — 1) x (n —1):

13 2 ... 2
3 1 3
My1=1|2 3 =
3
2 3 1
1 3 3
3. Fir M = [3 1 3] ist I'y; die Symmetriegruppe der Parkettierung von R? mit
3 3 1

gleichseitigen Dreiecken.

Insbesondere ist hier schon zu sehen, dass es sowohl endliche Coxetergruppen als auch
unendliche Coxetergruppen gibt. Man kann zeigen, dass die endlichen Coxetergruppen
sich immer als Spiegelungsgruppen einer n-Sphére auffassen lassen. Die Lage bei den
unendlichen Coxetergruppen ist etwas komplizierter. Einige davon treten als Spiege-
lungsgruppen von euklidischen oder hyperbolischen Rdumen auf.

Definition 2.3.9 (Artingruppen). Sei S eine Menge von Erzeugern und seien
si,8; € S. Die Zopfrelation der Linge m;;, auf den Erzeugern s; und s;, notiert
mit b(m;;), ist die Relation der Form:

SiSjSiSj 000 = SjSiSjSi °oo0 g

wobei die linke und die rechte Seite jeweils aus m; ; Buchstaben bestehen.
Eine Artingruppe ist eine Gruppe mit Prasentierung der folgenden Form:

<81, -y Sp ’ b(mm) VZ,j>

\.

Die Zopfrelation der Lange 3 lautet zum Beispiel s;s;s; = 5;5;5;.
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Wir haben hier ein bisschen mit der Notation gemogelt. Streng genommen sind Relatio-
nen Worte iiber S*. Hier wollen wir aber eine Gleichheit von zwei gleich langen auf s;
und s; alterierenden Worten betrachten. Wir teilen dazu fiir die Prasentierung aus der
freien Gruppe iiber S die kleinste Normale Untergruppe raus in der die Worte jeweils
gleich werden.

Aus den Definitionen erhalten wir: Artingruppen haben als Quotienten die Coxetergrup-
pen in denen die zusétzlichen Relationen s;s; gelten fiir alle Erzeuger s;. D.h. zusétzlich
zu den Zopfrelationen werden die Relationen s;s; entsprechend den Konstanten m;; her-
ausgeteilt.

Beispiel 2.3.10 (Beispiele fiir Artingruppen). Artingruppen interpolieren zwischen frei-
en Gruppen und freien abelschen Gruppen.

1. Freie Gruppen sind Artingruppen in denen alle Zopfrelationen b(m;;) trivial sind,
d.h. es gilt m;; = oo fiir alle 4, j.

2. Freie abelsche Gruppen Z" sind Artingruppen. Setze dazu m; = oo fiir alle ¢ und
my; = 2 fiir alle 7 # j.

3. Rechtwinklige Artingruppen (RAAGSs) sind Artingruppen mit m;; € {2, oo} fiir alle
1,].
4. Alle Zopfgruppen B,,, n > 1 sind Artingruppen. Die Elemente in B,, sind n ver-

knotete Stréange. Siehe Abbildung [2.9] (Mehr zur diagrammatischen Definition von
Artingruppen miindlich).

. -

yh LH | \ v Slomomh \ K l

2 Vi Kndtem

Ues\ena p%w,% = Stepeln
s Clowmanke.

i 38 1151 RR 1. )

M ~

Abbildung 2.9: Visualisierung Zopfgruppen.
Im Rest des Kapitels gehen wir der Frage nach wie viele verschiedene endlich prasen-

tierte Gruppen es bis auf Isomorphie iiberhaupt geben kann. Eine Antwort liefert am
Ende Theorem [2.3.13l
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Proposition 2.3.11. Es gibt eine 2-erzeugte Gruppe G, die tiberabzdhlbar viele,
paarweise nicht-isomorphe normale Untergruppen hat.

Beweisskizze. Betrachte die Gruppe G := (s,t | R) fir die Relationsmenge
R:={[[s,t"st™],s] | n € Z} U{[[s,t"st™"],t] | n € Z}.

Sei C' die von der Menge {S¢ := [s,t"st™"] | n € Z} erzeugte Untergruppe von G.
Dann ist C zentral in G, d.h. alle Elemente in C' sind invariant unter Konjugation mit
s und t (und somit g € G) nach Definition von R.

Man kann zeigen, dass C' = @, Z. Diese Summe enthélt iiberabzéhlbar viele Unter-
gruppen. Zum Beispiel ist fiir eine beliebige Teilmenge von Z die von Einheitsvektoren
zu dieser Teilmenge erzeugte Untergruppe in C enthalten. Jede solche Untergruppe ist
aber normal in GG, weil sie Untergruppe der zentralen Untergruppe C' in G ist. O

Proposition 2.3.12. Sei G endlich erzeugt. Dann sind dquivalent:
1. G enthdlt iberabzdhlbar viele verschiedene normale Untergruppen.

2. G hat tiberabzihlbar viele, paarweise nicht-isomorphe Quotienten.

Beweis. Zu (1) = (2): Wir zeigen —(2) = —(1). Angenommen, G hat nur abzéhlbar
viele paarweise verschiedene Quotienten. Sei () so ein Quotient. Weil GG endlich erzeugt
ist, ist @ selbst abzdhlbar. Dann existieren nur abzéhlbar viele Homomorphismen ¢ :
G—(@Q). Diese abzéhlbar vielen Homomorphismen induzieren abzéhlbar viele normale
Untergruppen N = ker(¢) von G fiir die gilt G/)y = Q. Die Gruppe G kann nur
abzahlbar viele verschiedene normale Untergruppen haben, wenn es nur abzéhlbar viele
verschiedene Quotienten gibt, was im Widerspruch zur 1. Aussage steht.

Zu (2) = (1): Zu jedem Quotienten @) von G gibt es eine natiirliche Projektion ¢ :
G—Q mit Kern N := ker(¢p). Fiir paarweise verschiedene @, Q) sind auch die normalen
Untergruppen N, N’ in G verschieden. Somit folgt der Satz. n

Theorem 2.3.13 (Anzahl 2-erzeugter Gruppen). Es gibt dberabzihlbar viele (Iso-
morphieklassen von) Gruppen, die von zwei Elementen erzeugt werden.

Beweis. Proposition [2.3.11] liefert uns eine Gruppe mit iiberabzahlbar vielen norma-
len Untergruppen. Proposition [2.3.12|liefert dann zugehorige (verschiedene) Quotienten.
Also gilt der Satz. O
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Korollar 2.3.14 (Endlich erzeugte, nicht endlich prasentierte Gruppen). Es gibt
tiberabzdhlbar viele (Isomorphieklassen von) endlich erzeugten Gruppen, die nicht
endlich prasentiert sind.

Beweis. Es existieren nur abzéhlbar viele endliche Préasentierungen von Gruppen, da
iiber jedem endlichen Erzeugendensystem nur abzahlbar viele endliche Relationsmengen
existieren. Mit Theorem [2.3.13| folgt die Behauptung. [
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