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Vorlesungsskript mit Ubungen fiir ca 28 Vorlesungen 4 90 Minuten.

Es wird keine Algebraische Topologie vorausgesetzt. Daher ist an einigen Stellen ein
anderer Beweis oder eine leicht umstédndlichere Formulierung gewahlt als es mit der
Sprache von Fundamentalgruppen und Uberlagerungen moglich wére.

Kommentare und Hinweise gerne an schwer@uni-heidelberg.de schicken. Danke.
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1 Grundlagen uber Gruppen

Gruppen und Réume sind die wesentlichen Objekte der geometrischen Gruppentheorie.
In diesem Kapitel werden wir diese beiden Objekte einfiithren sowie die entsprechenden
Grundlagen besprechen.

1.1 Gruppen als Symmetrien von Objekten

Die Kernidee der geometrischen Gruppentheorie ist die Untersuchung der Beziehungen
zwischen algebraischen Strukturen, insbesondere Gruppen, und geometrischen Objekten,
die wir hier ganz allgemein als R&ume bezeichnen. In diesem Kurs werden wir Gruppen
als Symmetrien von Radumen auffassen und sie aus dieser Perspektive heraus analy-
sieren. Gruppen wirken als Symmetrien auf topologischen Raumen oder geometrischen
Strukturen. Die Betrachtung geeigneter Rdume und ihrer geometrischen Eigenschaften
kann daher tiefere Einsichten in die algebraische Struktur der betrachteten Gruppen
ermoglichen. Umgekehrt kénnen wir algebraische Eigenschaften nutzen, um Aussagen
iiber Rdume mit entsprechenden Symmetrien zu machen. Die Geometrische Gruppen-
theorie nutzt dabei einerseits haufig Methoden der Geometrie oder der algebraischen
Topologie und hat andererseits selbst vielféltige Anwendungen in und Verbindungen zu
verschiedensten Bereichen der modernen Mathematik.

Betrachten wir als Motivation zunéchst ein einfaches Beispiel.

Beispiel 1.1.1 (Symmetrien eines Wiirfels). Betrachten wir den Einheitswiirfel C' in R3.
Wollen wir iiber Symmetrien des Wiirfels sprechen, so miissen wir zunédchst kléren, was
wir unter einer Symmetrie verstehen. Bei Symmetrien kénnen wir grundsatzlich zwischen
orientierungserhaltenden und orientierungsumkehrenden Symmetrien unterscheiden.
Eine orientierungserhaltende Symmetrie des Wiirfels ist eine Abbildung des Wiirfels auf
sich selbst, die aus durchfithrbaren Bewegungen im Raum besteht. D.h. Hochheben, Dre-
hen und deckungsgleich wieder Absetzen ist erlaubt, Abbildungen wie Spiegelungen sind
jedoch nicht erlaubt. Diese wiirden zu weiteren, orientierungsumkehrenden Symmetrien
fithren.

Beispiele fiir orientierungserhaltende Symmetrien des Wiirfels sind die Rotationen ent-
lang der in Abbildung abgebildeten Rotationsachsen um die Winkel (von links nach
rechts) k- 2,k - oder k- 2F, fiir k € Z.

Wir kénnen die Geometrie des Wiirfels nutzen, um die Anzahl der orientierungserhalten-
den Symmetrien zu zahlen. Dabei gibt es unter anderem die folgenden beiden Z&hlweisen:
1. Zahlweise: Wir beobachten zunéchst, dass jede Ecke 8 verschiedene Positionen einneh-
men kann. Steht das Bild f(v) = v einer Ecke v fest, so bleiben fiir deren drei Nachbarn



noch drei Moglichkeiten, wie wir diese (orientierungserhaltend) auf die Nachbarn der
Ecke v" abbilden konnen. Die Bilder dieser 4 Ecken (v und ihre drei Nachbarn) legen
eine Symmetrie vollstédndig fest. Also gibt es insgesamt 8 * 3 = 24 Symmetrien.

2. Zahlweise: Jede Symmetrie vertauscht die 4 Diagonalen (d.h. Strecken zwischen ge-
geniiberliegenden Ecken) des Wiirfels. Jede Vertauschung solcher Diagonalen liefert eine
eindeutige Symmetrie des Wiirfels. Die orientierungserhlatenden Symmetrien des Wiir-
fels entsprechen daher gerade den Permutationen der 4 Diagonalen. Somit gibt es 4! = 24
Symmetrien.

Abbildung 1.1: Symmetrieachsen des Wiirfels

Wir werden sehen, dass jede (endlich erzeugte) Gruppe die Symmetriegruppe eines geo-
metrischen Objekts ist. Zur Erinnerung wiederholen wir hier einige wesentliche Defini-
tionen im Kontext von Gruppen. Wir gehen jedoch davon aus, dass Ihnen diese bekannt
und auch vertraut sind.

Definition 1.1.2 (Gruppen). Eine Gruppe (G,-) ist eine Menge G mit einer
Verkniipfung - : G x G — G, sodass fiir alle a, b, c € G gilt:

1. Die Verkniipfung ,,-“ ist assoziativ: a - (b-c) = (a-b) - c.
2. Es existiert ein neutrales Elementd1 € G mit 1-a=a-1 = a.
3. Es existieren Inverse a ' € Gmita™' -a=a-a ' = 1.

Eine Teilmenge H von G heiftt Untergruppe, falls H bzgl. der Einschrinkung der
Verkniipfung - auf H x H eine Gruppe ist und H beziiglich der eingeschréankten
Verkniipfung abgeschlossen ist. Letzteres ist genau dann der Fall, wenn fiir alle
g,h € H auch g-h~! € H ist. Wir schreiben dann H < G.

*Wir schreiben 1 fiir das neutrale Element in einer Gruppe um es nicht mit den vielen Kanten
in diversen Graphen zu verwechseln, die wir im Laufe des Kurses betrachten werden.

Beispiel 1.1.3. Einige erste Beispiele von Gruppen sind:

1. Die ganzen, rationalen und reellen Zahlen (Z,+) < (Q,+) < (R, +) jeweils mit
Addition als Verkniipfnug.
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2. Die (multiplikativen) Einheitengruppen (R*,-) und (C*,-).

3. Fir n € N ist die symmetrische Gruppe Sym(n), gegeben durch die Menge der
Permutationen

{f: {1,...,n} = {1,...,n}| f bijektiv}

mit der Verkniipfung ,,0“, der Komposition von Abbildungen. Allgemeiner bezeich-
ne mit Sym(X) fiir eine beliebige (auch unendliche) Menge X die symmetrische
Gruppe tber X, d.h. die Gruppe der Bijektionen von X auf X bzgl. der iiblichen
Verkniipfung von Abbildungen.

4. Die Menge Z? = {(m,n) | m,n € Z} ist Gruppe beziiglich der komponentenweisen
Verkniipfung
(m,n)-(m',n') :=(m+m',n+n').

Definition 1.1.4 (Homomorphismus). Seien (G,e) und (H,o) Gruppen. Eine
Abbildung ¢ : G — H heift Homomorphismus, falls fir alle g1, go € G gilt:

©(g91 0 g2) = p(g1) © p(g2)-

Ein Homomorphismus heifst Isomorphismus, wenn er bijektiv ist. Existiert ein
Isomorphismus zwischen G und H, so schreiben wir G = H und sagen, dass diese
Gruppen isomorph zueinander sind.

Fiir einen Homomorphismus ¢ gilt p(1g) = 14.
Ein Homomorphismus ¢ : G — H ist genau dann ein Isomorphismus, wenn ein nverser
Homomorphismus ¢~* : H — G existiert, sodass gilt:

0 top=r1idgund pop ! =idy.
Beispiel 1.1.5. Wir betrachten einige Beispiele zu Homomorphismen:

1. Die Abbildung ¢ : (Z,+) — (Z,+) : z + n -z ist fir alle n € N ein Homomor-
phismus. Sie ist genau dann ein Isomorphismus, wenn n = 1.

2. Die Abbildung v, : (Z,+) — (Z,+) : z+> n+ z ist fiir kein n € N ein Homomor-
phismus.

3. Die Abbildung exp : (R,+) — (Rsq,-) : t — €' ist Isomorphismus mit log als
inverse Abbildung.

4. Fir Untergruppen H < ( ist die Inklusionsabbildung i : H < G ein Homomor-
phismus.

Eins der ersten schonen Resultate, das man ohne viel Theorie beweisen kann, ist der
Satz von Cayley.
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Theorem 1.1.6 (Satz von Cayley). Jede Gruppe ist isomorph zu einer Unter-
gruppe einer symmetrischen Gruppe.

Beweis. Sei G eine beliebige Gruppe. Setze H := Sym(|G|) (siehe Beispiel [l.1.3]3)), wobei
G als Menge aufgefasst wird. Definiere eine Abbildung

Y : G — H durch g~ fg,

wobei die Abbildung f, definiert ist durch f,(z) := ¢ - « fiir alle z € G. Dann gilt fiir
alle g, h € G, dass

U(gh)(x) = fan(z) = (gh) - w =g (h-x) = fo(fu(x)) = (fg © fa)(2).

Es gilt also f, o fi, = fg.n. Die inverse Abbildung zu f, ist f,-1. Das neutrale Element in
H ist die Identitatsabbildung auf GG, die das Bild des neutralen Elements e € G unter ¢
ist. Wie oben gezeigt, ist ¢ : G — H also ein Gruppenhomomorphismus. Angenommen,
es gelte ¢¥(g) = f., fiir ein g € G. Das impliziert g - h = h fiir alle h € H. Also ergibt
sich g = e und deshalb auch, dass ¢ injektiv ist. O

Um alle Elemente einer (unendlichen) Gruppe zu beschreiben, geniigen manchmal end-
lich viele Elemente und deren Verkniipfungen.

Definition 1.1.7 (Erzeugendensystem). Sei G eine Gruppe und S C G eine
Teilmenge.

1. Die von S erzeugte Untergruppe (S) ist die kleinste Untergruppe von G, die
S enthélt.

2. Die Menge S heilt Erzeugendensystem von G, wenn G = (S) gilt.

3. Die Gruppe G heifst endlich erzeugt, wenn eine endliche Teilmenge S C G
existiert, die G erzeugt. Wir nennen GG k-erzeugt, wenn es ein k-elementiges
Erzeugendensystem fiir G gibt.

Die leere Menge @ erzeugt die triviale Gruppe {1}.

J

Wir schreiben manchmal 1 statt {1} fiir die triviale Gruppe (und missbrauchen dabei
ein kleines bisschen die Notation).

Beispiel 1.1.8. Die Gruppe (Z, +) ist endlich erzeugt. Erzeugendensysteme sind zum
Beispiel die Menge {1} oder {2,3} oder beliebige andere Teilmengen mit denen sich die
1 schreiben lasst. Die Gruppe (Q, +) oder auch (R, +) ist dagegen nicht endlich erzeugt.
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Definition 1.1.9 (Diedergruppen). Fiir alle n € N>3 bezeichnen wir die Symme-
triegruppe eines reguldren n-Ecks als (endliche) Diedergruppe D,,.

Das bedeutet, dass D,, die Menge aller Isometrien f : R? — R? ist, die die Ecken-
menge eines in R? eingebetteten, reguliren n-Ecks auf sich selbst abbildet. Die
Diedergruppe D,, hat 2n Elemente.

Abbildung zeigt verschiedene n-Ecke mit Spiegelungsachsen (tiirkis und lila). Die
gelben Pfeile illustrieren die moglichen Rotationen um den Mittelpunkt m des n-Ecks
um Vielfache des Winkels 27”

Abbildung 1.2: n-Ecke mit Spiegelungsachsen und Rotationen

Lemma 1.1.10. Alle Diedergruppen D,,,n € Ns3, sind 2-erzeugt.

Beweis. Sei P, ein reguldres n-gon mit Zentrum m. Eine Diagonale in P, ist eine Gerade
durch m und eine Ecke v von P,.

Sei v nun eine fest gewéhlte Ecke und s, die Spiegelung an der Diagonalen durch m und
v. Weiter sei p die Rotation um m mit Winkel 27“ Wir zeigen, dass D,, von der Menge
S = {sy, p} erzeugt wird.

Sei f ein beliebiges Element aus D,,. Dann bildet f die Ecke v auf eine Ecke f(v) ab
Es existiert dann ein & € Z mit f(v) = pF(v), d.h. f(v) is Bild von v unter k-fachem
Anwenden von p. Bezeichne nun mit u einen der Nachbarn von v in P,.

\ w)
= eind
< ”M(t‘el‘u"

Abbildung 1.3: Spiegelung von u durch s,,.
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Fiir das Bild von u unter f gibt es zwei Méglichkeiten. Ist p*(u) = f(u), dann ist f = pF,
da fop~! die Kante {u, v} und somit das n-Eck fixiert. Andernfalls, wenn p*(u) # f(u),
ist p* o s,(v) = f(v) und p* o s,(u) = f(u) und somit f = p* o s,.

—— ——

=v #u
In beiden Féllen lésst sich f mit p und s, ausdriicken. Da f beliebig gewéahlt war erhalten
wir D,, = ({84, p})- O

1.2 Neue Gruppen aus alten

Um moglichst interessante Beispiele betrachten und vielfaltige Gruppen untersuchen zu
kénnen, brauchen wir Methoden zur Konstruktion sowie zur Darstellung von Gruppen.
Eine Moglichkeit ist es, neue Gruppen aus bereits bekannten Gruppen zu ,bauen. Dieses
Kapitel behandelt die wesentlichen solcher Konstruktionen.

Definition 1.2.1 (Faktorgruppe). Sei N eine normale Untergruppen in G (abge-
kiirzt N < G). Dann ist die Menge aller Nebenklassen g/N von N in G eine Gruppe,
genannt Foktorgruppe oder Quotient von G beziiglich N, notiert mit G/ N.

Proposition 1.2.2. Sei nun N < G. Dann hat G/N beziiglich der Projektion
m:G— G/ N mit g — gN folgende universelle Eigenschaft:

Fiir alle Gruppen H und fir alle Homomorphismen ¢ : G — H mit N C ker(yp)
existiert genau ein Homomorphismus @ : G/N — H mit pom = .

Die Aussage in Proposition sagt gerade, dass das Diagramm in Abbildung
kommutiert.

Abbildung 1.4: Kommutatives Diagramm zur universellen Eigenschaft von Faktorgrup-
pen von G beziiglich einer normalen Untergruppe N.

Definition 1.2.3 (Direktes Produkt). Sei I eine Indexmenge und (G;);e; eine
Familie von Gruppen. Das direkte Produkt [[,.; G; ist die Gruppe, die als Grund-
menge das karthesische Produkt der Gruppen G; hat und als Verkniipfung die
komponentenweise Verkettung gegeben durch

((90)ier, (hi)ier) = (i - Pi)ier-
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Das direkte Produkt zweier Gruppen ist eine Erweiterung des zweiten Faktors durch den

ersten im Sinne von Definition [1.2.5] Nicht jede Erweiterung ist ein direktes Produkt.

7

Definition 1.2.4 (Semidirektes Produkt). Seien N und ¢ Gruppen und sei
¢ : Q — Aut(N) ein Homomorphismus. Das semidirekte Produkt von @ mit N
beziiglich ¢ ist die Gruppe N X, @), die als Grundmenge N x ) hat und deren
Verkniipfung gegeben ist durch

((n, p), (m, q)) = (n (p)(m), pq),

wobel ¢(p) € Aut(N) gilt.

7

Diedergruppen lassen sich zum Beispiel als semidirekte Produkte schreiben, siche dazu

Ubungsaufgabe [6.1.1]

Definition 1.2.5 (Gruppenerweiterung). Es seien zwei Gruppen @ und N gege-
ben. Eine Gruppe G is eine Erweiterung von () durch N wenn es eine injektive
Abbildung ¢ : N — G und eine surjektive Abbildung 7 : G — @ gibt, sodass
folgende Sequenz exakt ist:

I >N—=G—»Q—1

Das kartesische Produkt G x H mit der Inklusionsabbildung ¢ : H — G x H und
der Projektion 7 : G x H — G bezeichnen wir auch als triviale Erweiterung von
G durch H.

Lemma 1.2.6. Sei G eine Erweiterung von ) durch N. Dann gilt
1. N ist ein Normalteiler von G.
2. Q) ist isomorph zum Quotienten G/N.

Spezielle Klassen von Erweiterungen sind die oben eingefiihrten direkten und semi-
direkten Produkte. Fine Erweiterung G von @) ist genau dann ein semi-direktes
Produkt, wenn ein Homomorphismus ¢ : QQ — G mit mo ¢ = 1 existiert.

1.3 Gruppenwirkungen und Graphen

In diesem Kapitel prazisieren wir die Idee von Gruppen als Mengen von Symmetrien

und fithren dazu Gruppenwirkungen ein.

Hierzu betrachten wir bestimmte Rdume und ihre Automorphismengruppen, also ihre
Symmetrien. Beispiele solcher Rdume sind Graphen, metrische Raume, Vektorrdume,
Simplizial- oder polyedrische Komplexe, Mannigfaltigkeiten oder topologische Raume.
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Wir werden uns in diesem Kapitel auf Graphen und im Speziellen auf sogenannte Cay-
leygraphen konzentrieren. Das sind Rdume, die einer Gruppe zugeordnet werden kénnen,
auf denen die Gruppe selbst wirkt und die somit die Struktur der Gruppe beschreiben.

Definition 1.3.1 (Gruppenwirkung). Sei G eine Gruppe und X ein Raunﬂ Eine
Wirkung von G auf X ist ein Homomorphismus A : G — Aut(X). Abkiirzend

schreiben wir GG AV X oder nur G ~ X.

Bemerkung 1.3.2.

1. Eine Wirkung ist also eine Familie (f;)4e¢ von Automorphismen f, : X — X,
wobei fiir alle g, h € G gilt:

fg th = fgh und feg =1dx.

2. Wir konnen eine Wirkung auch als Abbildung

Gx X —=X
(g.7) = g.x

schreiben, wobei fiir alle g, h € G und fiir alle z € X gilt:

(gh).x = g.(h.x) und eg.z = x.

Wir werden diese Betrachtungsweisen austauschbar verwenden.
Beispiel 1.3.3. Schauen wir uns einige Beispiele fiir Gruppenwirkungen an.

1. Jede beliebige Gruppe G hat auf jedem Raum X die triviale Wirkung, gegeben

durch
G — Aut(X)

g)—)ZdX

fiir alle g € G. Diese Wirkung ist meist nicht von weiterem Interesse.

2. Die Automorphismengruppe G := Aut(X) eines Raumes X wirkt kanonisch auf
X durch die Identitéatsabbildung

idaue(x) @ Aut(X) — Aut(X).

Das Konzept der Gruppenwirkungen verallgemeinert also das der Automorphismus-
und Symmetriegruppen.

3. Die Diedergruppe D,, wirkt auf der Menge der Ecken, Kannten und Diagonalen
eines reguldren n-Ecks.

'Ein Objekt in einer kleinen Kategorie C, d.h. Mor(X,Y) ist eine Menge fiir alle X, Y € Obj(C).
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4. Fiir einen festen Drehwinkel wirken die ganzen Zahlen auf dem Einheitskreis durch
Rotation um ganze Vielfache des Drehwinkels.
Sei dazu # € R . Wir betrachten die Gruppe G := Z und den Raum X := S! =
{z € C| |z| = 1}. Dann wirkt G auf X durch

f:ZxS"'— st
(n, z) — 2™ . 2,
da (0,2) = z und f(n +m,z) = 2™ ™) = f(n, f(m,2)) fiir alle m,n € Z gilt.
Dabei ist 0 = ez . Die Wirkung entspricht der Rotation um Vielfache des Winkels
2mh.
Es gilt also Z A st

5. Die ganzen Zahlen wirken auferdem auf den reellen Zahlen durch Translation.
Wir betrachten also die Gruppe G := Z und den Raum X := R. Dann wirkt G

auf X durch
g:ZxR—=R

(n,z) »n+ux,
da (0,2) =z und g(n +m,x) =n+m+x =n+ g(m,x) = g(n, g(m, z)) fiir alle
m,n € Z gilt.
Es gilt also Z A R.
6. Jede Gruppe wirkt auf verschiedene Weisen auf sich selbst. Die Gruppe G fungiert

dann sowohl als Menge der Symmetrien als auch als Raum. Beispiele sind die
triviale Wirkung sowie die

e Links-Multiplikationswirkung: G ~ G via (g,h) — g - h,
e Konjugationswirkung: G ~ G via (g, h) — ghg™'.

Definition 1.3.4 (Stabilisator und Orbit). Sei G eine Gruppe, die auf einer Menge
X wirkt. Der Stabilisator eines Elements x € X unter G ist die Menge Stabg(x)
der Gruppenelemente, die x fixieren, d.h.

Stabg(z) :={g € G| g.x = z}.

Der Orbit oder die Bahn G.x eines Elements x € X unter G ist die Menge aller
y € X, sodass ein g € G existiert mit g.x = y, d.h.

Gr:={ye X|3geGmitgx =y}
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Definition 1.3.5 (Eigenschaften von Wirkungen). Eine Wirkung A einer Gruppe
G auf einer Menge X heifst

1. frei, falls g.x # x fir alle z € X und alle g € G\ {1¢}.
Eine Gruppenwirkung ist genau dann frei, wenn Stabg(z) = {1} fiir alle

x e X gilt.

2. treu, falls A : G — Aut(X) injektiv ist.
Eine Gruppenwirkung ist genau dann treu, wenn fiir alle ¢ € G \ {14} ein
x € X existiert mit g.x # x.

3. transitiv, falls G.x = X fiir alle x € X gilt.
Eine Gruppenwirkung ist genau dann transitiv, wenn fiir alle z,y € X ein
g € G existiert mit g.x = y.

\ 7

Beispiel 1.3.6. Wir {iberpriifen nun einige der Gruppenwirkungen aus Beispiel
auf ihre Eigenschaften:

1. Die Linksmultiplikationswirkung von G auf sich selbst ist frei, treu und transitiv.

2. Die Konjugationswirkung von G auf sich selbst ist im Allgemeinen weder frei, noch
treu, noch transitiv.

3. Die Rotationswirkung von Z auf S! um ganzzahlige Vielfache eines Drehwinkels
2760 mit 6 € R ist:
e frei, genau dann, wenn 6 € R\ Q,
e treu, genau dann, wenn sie frei ist, und
e fiir alle 6 € R nicht transitiv.

4. Die Wirkung der vollen Isometriegruppe Iso(S!) auf S! ist transitiv aber nicht frei,
da Spiegelungen des Kreises Fixpunkte haben.

Eine wichtige Beispielklasse von Rdumen, auf denen wir Gruppenwirkungen betrachten
wollen, sind Graphen. Wir werden Graphen einfiihren, die uns ein Bild einer Gruppe be-
ziiglich eines gegebenen Erzeugendensystems liefern: sogenannte Cayley-Graphen. Daher
wiederholen wir hier nochmal in Kiirze die wichtigsten Begriffe.

Definition 1.3.7 (Graphen). Ein Graph ist ein Tripel I' = (V, E, §) von Mengen
V und E und einer Randabbildung § : E — {{u,v} | u,v € V}. Die Elemente
v € V nennen wir Ecken und ein e € E heift Kante von I'. Die Elemente in d(e),
dem Bild der Kante e € F unter der Randabbildung, nennen wir auch die Ecken
oder Enden der Kante e.
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Definition 1.3.8 (Gerichtete Graphen). Fixieren wir zu jeder Kante e € E eine
Ordnung auf dem Bild d(e) = {vy, v2} nennen wir den Graphen gerichtet oder ori-
entiert. Eine Kanten e mit d(e) = {vy,v9} und Orientierung ,;vs vor v;“ schreiben
wir dann {iblicherweise als geordnetes Tupel (v, v1).

. J

Kanten stellen wir iiblicherweise als Linie zwischen ihren Ecken dar. Betrachten wir
gerichtete Graphen, so notieren wir die Orientierung als Pfeil auf der Linie, die vom
ersten zum zweiten Element in der Ordnung zeigt.

Wir werden im Folgenden auch oft statt 'Kante e’ einfach das gordnete oder ungeordnete
Paar ihrer Ecken notieren, also (u,v) und {u,v}. Das ist insbesondere dann sinnvoll,
wenn es sich um Graphen ohne Doppelkanten handelt.

Beispiel 1.3.9. Graphen kénnen (ungerichtet) iibereinstimmen, sich aber als gerichtete
Graphen voneinander unterscheiden. Die folgenden Graphen sind solche Beipiele:

*—>0—>0  O———>0<—@

Definition 1.3.10 (Schleifen und Doppekanten). Sei I' = (V, E,¢) ein Graph.
Eine Schleife in T ist eine Kante e € E mit d(e) = {v} fir ein v € V.
Eine Paar von Kanten e, ¢’ € E heifst Doppelkante wenn §(e) = §(€’).

Definition 1.3.11 (Wege in Graphen). Sei I' = (V, E, 0) ein Graph.

1. Ein Kantenzug p der Lange n in I' ist eine Folge von Ecken v; € V1 =
0...n und Kanten ¢; € E, i = 1...n, sodass fir alle i € {1...,n} gilt

(5(62) = {'Ui—la ’Ui}.

2. Wir nennen einen Kantenzug einen Pfad, wenn all seine Ecken paarweise
verschieden sind.

3. Ein Unterkantenzug p’ eines Kantenzugs p ist eine Teilmenge der Ecken
v; und zugehorigen Kanten in p mit Indizes in einer Menge der Form
{i,...,k} € {0,1,...,n}. Es handelt sich um einen Unterpfad wenn p' selbst
ein Pfad ist.

4. Ein Kreis (oder Zykel) ist ein Kantenzug vy, . . ., v, fiir den gilt: vy = v, und
jeder echte Unterkantenzug ist ein Pfad.

J

Manchmal schreiben wir Kantenziige manchmal auch nur als Eckenfolge in der aufein-
anderfolgende Ecken durch eine Kante verbunden sind.
Beispiele fiir die Begriffe in Definition [1.3.11| sind in Abbildung zu sehen.
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Kantenzug Pfad

Abbildung 1.5: Ein Graph mit markiertem Kantenzug, Kreis und Pfad.

Definition 1.3.12 (Béume). Sei I' = (V, E, §) ein Graph. Wir sagen I ist simpli-
zial, wenn weder Schleifen noch Doppelkanten in I' existieren.
Ein Baum ist ein simplizialer Graph ohne Kreise.

Definition 1.3.13 (Ecken-Grad, Blétter). Sei I' = (V, E, §) ein Graph.

1. Der Grad einer Ecke ist die Anzahl seiner Nachbarn, d.h. die Anzahl aller
Ecken v’ # v, fiir die es eine Kante e € E gibt mit §(e) = {v,v'}.

2. Eine Ecke v € V von Grad 1 nennen wir Blatt.

3. Ein Graph ist reguldr, wenn jede Ecke den selben Grad hat.

Lemma 1.3.14 (Charakterisierung von Badumen). Fin zusammenhdngender, sim-
plizialer Graph mit mindestens zwei Ecken ist genau dann ein Baum, wenn es zu
je zwei Ecken genau einen verbindenden Pfad gibt.

Beuweis. Siehe Ubungsaufgabe [6.1.2] m

Definition 1.3.15 (Morphismen von Graphen). Seien zwei Graphen I' = (V] E, 9)
und IV = (V' E'¢') gegeben. Ein Morphismus f : I'=I" ist ein Paar von
Abbildungen fy : V — V' und fg: E — E’ mit

0" o fe = (fv* fv)ood.

Ein Isomorphismus ist ein Morphismus f, zu dem ein Morphismus f=! : IV — T
existiert mit

flof:id]_" und fof/:id]_’v,

Somit kénnen wir fiir einen Graphen I' die Automorphismengruppe Aut(I') definieren
und folglich auch Gruppenwirkungen auf Graphen betrachten.
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Definition 1.3.16 (Gruppenwirkungen auf Graphen). Sei G eine Gruppe und sei
I' = (V,E,0) ein Graph. Eine Wirkung von G auf I' ist ein Homomorphismus
A:G— AutT.

Bemerkung 1.3.17. Etwas konkreter sehen Wirkungen auf Graphen wie folgt aus:

1. Eine Wirkung von G auf I' ist durch eine Familie (f;),e¢ von Automorphismen
von I' gegeben, die durch Gruppenelemente indiziert ist und fiir die gilt:

e Firalle g e Gist fg=(f), fF) mit f) :V =V und fF: E— E.
e Beide Abbildungen erfiillen die Gleichungen aus [I] in Bemerkung [1.3.2]
Zusétzlich gilt: Fiir eine Kante e € E mit d(e) = {u, v} gilt
(fy (e)) = {fy (), f) (v)}.
Das nennen wir auch ,Vertraglichkeit mit der Randabbildung®.

2. Als Abbildungen geschrieben haben wir ein Paar

Ay :GxV —V:(g,v) — gv=Ay(9)(v), und
Ap:GxXE— E:(g,e) — g.e=Ag(g9)(e),

wobei die Eigenschaft [2] aus Bemerkung [1.3.2] gilt.
Zusitzlich ist fiir eine Kante e € F mit d(e) = {u, v} das Bild der Randabbildung

wie folgt gegeben:
0(Ae(9)(e)) = {Av(9)(w), Av(g)(v)}-

Definition 1.3.18 (Freie Wirkungen auf Graphen). Eine Wirkung von G auf
I' = (V,E,d) heift frei, wenn Ag und Ay frei sind. Das heifst, wenn fiir alle

g € G\ {eg} gilt:
(i) Die Abbildung Ay (g) ist fizpunktfrei, d.h. fiir alle v € V ist (Ay(g))(v) # v.
(ii) Die Abbildung Ag(g) ist inversionsfrei, d.h. fiir alle e € E'ist (Ag(g))(e) # e.

Wie bereits angedeutet, kann es hilfreich sein, eine Gruppe selbst als Raum aufzufassen
bzw. ihr einen Raum zuzuordnen, auf dem sie wirkt. Hierzu wollen wir nun einer Gruppe
einen Graphen zuordnen, den sogenannten Cayleygraphen. Diese Zuordnung geschieht in
Abhéngigkeit von der Wahl eines Erzeugendensystems, ist also nicht eindeutig. Dennoch
konnen wir diesen Graphen als ein mogliches Bild der Gruppe verstehen, ihn geome-
trisch untersuchen und folglich die Eigenschaften der Gruppe untersuchen, indem wir
die Eigenschaften des Graphen untersuchen.
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Definition 1.3.19 (Cayleygraphen). Sei G eine Gruppe und S C G ein Erzeu-
gendensystem mit 1g ¢ S.

1. Der (ungerichtete) Cayleygraph’| Cay (G, S) von G beziiglich S ist der Graph
mit Eckenmenge V' = G und Kantenmenge E = {{g,9s} | g € G, s € S}.

2. Der gerichtete Cayleygraph C—ay)(G, S) von G beziiglich S ist der Graph mit
Eckenmenge V' = G und Kantenmenge F = {(g,9s) | g € G, s € S}, wobei
(g,gs) die gerichtete Kante von g nach gs beschreibt. Wir beschriften die
Kante (g, gs) optional mit s.

?Cayleygraphen wurden urspriinglich unter dem Begriff Gruppenbild von Max Dehn eingefiihrt.

. 7

Cayleygraphen zu verschiedenen Erzeugendensystemen sind im Allgemeinen verschieden.
Es gibt zu einer Gruppe also mehrere Cayleygraphen. Siehe dazu auch Beispiel [I.3.21]

Bemerkung 1.3.20. Der ungerichtete Cayleygraph Cay(G, S) stimmt nicht in allen Fél-
len mit dem gerichteten Cayleygraph C—ay>(G, S) mit ,vergessener* Kantenorientierung
tiberein. Betrachte dafiir zum Beispiel die Gruppen G mit zwei Elementen G = {14, s}
fiir die gelte s2 = 1. Als Erzeugendensystem betrachte einfach die einelementige Menge
S = {s}. Dann sind Cay(G, S) und Cay(G, S) verschieden, siche Abbildung

4 S A_chg

(a) Cay(G, 5) (b) Cay(G., 5)
Abbildung 1.6: Gerichteter und ungerichteter Cayleygraph fiir G aus Bemerkung |1.3.20]

Beispiel 1.3.21. Unterschiedliche Erzeugendensysteme der ganzen Zahlen Z ergeben
verschiedene (gerichtete) Cayleygraphen.

1. Fir das einfachste Erzeugendensystem S = {1} sieht der Cayleygraph einem Zah-
lenstrahl dhnlich. Hier gibt es keine Doppelkanten und Cay(Z, S) stimmt mit dem
zugrundeliegenden Graphen des gerichteten Cayleygraphens C—ay)(Z,S) iiberein,
siehe Abbildung [1.74

2. Fir das Erzeugendensystem S = {—1, 1} von Z ergibt sich ein anderes Bild: durch
den zweiten Erzeuger entstehen Doppelkanten, sieche Abbildung [I.75]

3. Der (gerichtete) Cayleygraph von Z beziiglich S = {2, 3} sieht schon viel kompli-
zierter aus, da sowohl Ecken, die sich um Wert 2 unterscheiden als auch solche mit
Differenz 3 mit einer Kante verbunden werden. Vergleiche dazu Abbildung
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|

(a) Cay(Z,{1}) (b) Cay(Z, {~1,1}) (c) Cay(Z,{2,3})

Abbildung 1.7: Cayleygraphen von Z fiir verschiedene Erzeugendensysteme.

Beispiel 1.3.22. Hier zwei weitere Beispiele fiir Cayleygraphen:

1. Betrachte die symmetrische Gruppe G = Sym(3) erzeugt von den elementaren
Transpositionen (1, 2) und (2, 3), die die Eintrége 1 und 2 bzw 2 und 3 vertauschen.
Dann ist der Cayleygraph von G beziiglich S = {(1,2),(2,3)} ein Sechseck mit
Doppelkanten, sieche Abbildung [I.8|

2. Fiir eine beliebige Gruppe G ist C—ay>(G, G\ {1¢}) der doppelt vollstéandige Graph
auf |G| Ecken mit Kanten wie in Abbildung|1.9|fiir g, h € G.

a2 (i22)

A ()

(23) (\3 Z\

Abbildung 1.8: Der gerichtete Cayleygraph von Sym(3) beziiglich {(1,2),(2,3)} mit
gleichfarbigen Doppelkanten. Rote Kanten entsprechen (1,2) und grii-
ne Kanten entprechen (2, 3).

3C&
k'Y

Abbildung 1.9: Doppelte Kanten im vollstdndigen Graphen tiber |G| Ecken.
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Theorem 1.3.23 (Eigenschaften von Cayleygraphen). Sei G eine Gruppe mit
Erzeugendensystem S. Dann gilt:

1. C—a§;(G, S) und Cay(G, S) sind zusammenhdngend und schleifenfei.
2. C_ay>(G, S) und Cay(G, S) sind reguldr.

S C—ay)(G, S) und Cay(G, S) sind genau dann lokal endlich (d.h. alle Eckengra-
de sind endlich), wenn S endlich ist.

4. C—a§;(G, S) besitzt genau dann Doppelkanten, wenn (mindestens) ein s € S
mit s~ € S ewistiert.

D, C—a};(G, S) ist genau dann simplizial, wenn SN S~ = @.

Beweis. Diese Eigenschaften folgen leicht aus der Definition der Cayleygraphen und den
genannten Eigenschaften des jeweiligen Erzeugendensystems. O]

Beispiel 1.3.24 (Linkstranslationswirkung auf Cayleygraphen). Die Linskmultiplika-
tion innerhalb einer Gruppe G induziert eine Wirkung von G auf dem (gerichteten)
Cayleygraphen Cay(G, S) bzw. Cay(G, S) durch die Abbildungen

f V=V [P E—E
und
v gu (u,v) = (gu, gv)

fiir jedes g € G.

Nach der Konstruktion des Cayleygraphen gilt fiir (u,v) € E, dass v = u-s fiirein s € S
ist. Somit folgt f; (u) = gu und f; (us) = gus = gv, die Wirkung ist also wohldefiniert.
Die Wirkung heifst Linkstranslation von G auf Cay(G,S) bzw. auf C—ay)(G7 S).

Mit Cayleygraphen haben wir jede endlich erzeugte Gruppe als Symmetriegruppe eines
gerichteten Graphen realisiert:

Theorem 1.3.25 (Jede Gruppe ist Symmetriegruppe ihres Cayleygraphen). Sei
G Gruppe mit beliebigem, endlichen Erzeugendensystem S wvon G. Dann ist die
Linkstranslationswirkung von G auf Cay(G,S) ein Isomorphismus von G nach

Aut(Cay(G, S)).

Lassen Sie mich kurz daran erinnern, dass fiir ein Element ¢ € G die Ordnung von g
definiert ist durch ord(g) := min{n € N| ¢" = 14}.

Theorem 1.3.26 (Charakterisierung: freie Linkstranslationswirkung). Sei G von
S erzeugt. Die Linksmultiplikationswirkung von G auf Cay(G,S) ist genau dann
frei, wenn S keine Elemente der Ordnung 2 enthiilt.

Prof. Dr. Petra Schwer  Geometrische Gruppenteorie WS 2025/26 16



Beweis. Wir nehmen zunéchst an, dass die Wirkung frei sei. Ware s € .S von Ordnung
2, dann fixiert s unter der Linkstranslation die Kante {1g,s} in Cay(G,S) was im
Widerspruch zur Freiheit der Wirkung steht.

Nehmen wir nun umgekehrt an, dass es keine Elemente der Ordnung 2 in S gibt. Seien Ay
und Ag die von der Linkstranslation induzierten Wirkungen auf V' bzw. E in Cay(G, S).
Dann ist Ay fixpunktfrei, da die Linkstranslation gerade der Linksmultiplikation in G =
V' entspricht. Bleibt zu zeigen, dass A inversionsfrei ist.

Angenommen, es existiere ein e € F und ein g € G mit Ly(e) := Ag(g)(e) = e. Insbeson-
dere ist dann Ly (0(e)) = d(Ly(e)) = d(e). Mit d(e) = {v,v'} und v/ = vs fiir ein s € S
folgt, dass {v,v'} = {gv, gv'}.

1. Fall: Ist gv = v, so auch gv’ = v und g = 14, da Ay fixpunktfrei wirkt und Cay(G, S)
keine Doppelkanten hat, denn S enthélt keine Elemente der Ordnung 2.

2. Fall: Ist gv =/, so ist gv' = v, womit gilt:

v=gv = g(vs) = (gv)s = v's = vs>.

Da \y fixpunktfrei auf V wirkt, muss gelten s> = 1. Was im Widerspruch zur Annahme
an S steht. Somit ist \g inversionsfrei und die Behauptung folgt. m
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