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Vorlesungsskript mit Übungen für ca 28 Vorlesungen á 90 Minuten.
Es wird keine Algebraische Topologie vorausgesetzt. Daher ist an einigen Stellen ein
anderer Beweis oder eine leicht umständlichere Formulierung gewählt als es mit der
Sprache von Fundamentalgruppen und Überlagerungen möglich wäre.
Kommentare und Hinweise gerne an schwer@uni-heidelberg.de schicken. Danke.
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1 Grundlagen über Gruppen

Gruppen und Räume sind die wesentlichen Objekte der geometrischen Gruppentheorie.
In diesem Kapitel werden wir diese beiden Objekte einführen sowie die entsprechenden
Grundlagen besprechen.

1.1 Gruppen als Symmetrien von Objekten

Die Kernidee der geometrischen Gruppentheorie ist die Untersuchung der Beziehungen
zwischen algebraischen Strukturen, insbesondere Gruppen, und geometrischen Objekten,
die wir hier ganz allgemein als Räume bezeichnen. In diesem Kurs werden wir Gruppen
als Symmetrien von Räumen auffassen und sie aus dieser Perspektive heraus analy-
sieren. Gruppen wirken als Symmetrien auf topologischen Räumen oder geometrischen
Strukturen. Die Betrachtung geeigneter Räume und ihrer geometrischen Eigenschaften
kann daher tiefere Einsichten in die algebraische Struktur der betrachteten Gruppen
ermöglichen. Umgekehrt können wir algebraische Eigenschaften nutzen, um Aussagen
über Räume mit entsprechenden Symmetrien zu machen. Die Geometrische Gruppen-
theorie nutzt dabei einerseits häufig Methoden der Geometrie oder der algebraischen
Topologie und hat andererseits selbst vielfältige Anwendungen in und Verbindungen zu
verschiedensten Bereichen der modernen Mathematik.
Betrachten wir als Motivation zunächst ein einfaches Beispiel.

Beispiel 1.1.1 (Symmetrien eines Würfels). Betrachten wir den Einheitswürfel C in R3.
Wollen wir über Symmetrien des Würfels sprechen, so müssen wir zunächst klären, was
wir unter einer Symmetrie verstehen. Bei Symmetrien können wir grundsätzlich zwischen
orientierungserhaltenden und orientierungsumkehrenden Symmetrien unterscheiden.
Eine orientierungserhaltende Symmetrie des Würfels ist eine Abbildung des Würfels auf
sich selbst, die aus durchführbaren Bewegungen im Raum besteht. D.h. Hochheben, Dre-
hen und deckungsgleich wieder Absetzen ist erlaubt, Abbildungen wie Spiegelungen sind
jedoch nicht erlaubt. Diese würden zu weiteren, orientierungsumkehrenden Symmetrien
führen.
Beispiele für orientierungserhaltende Symmetrien des Würfels sind die Rotationen ent-
lang der in Abbildung 1.1 abgebildeten Rotationsachsen um die Winkel (von links nach
rechts) k · π

2
, k · π oder k · 2π

3
, für k ∈ Z.

Wir können die Geometrie des Würfels nutzen, um die Anzahl der orientierungserhalten-
den Symmetrien zu zählen. Dabei gibt es unter anderem die folgenden beiden Zählweisen:
1. Zählweise: Wir beobachten zunächst, dass jede Ecke 8 verschiedene Positionen einneh-
men kann. Steht das Bild f(v) = v′ einer Ecke v fest, so bleiben für deren drei Nachbarn



noch drei Möglichkeiten, wie wir diese (orientierungserhaltend) auf die Nachbarn der
Ecke v′ abbilden können. Die Bilder dieser 4 Ecken (v und ihre drei Nachbarn) legen
eine Symmetrie vollständig fest. Also gibt es insgesamt 8 ∗ 3 = 24 Symmetrien.
2. Zählweise: Jede Symmetrie vertauscht die 4 Diagonalen (d.h. Strecken zwischen ge-
genüberliegenden Ecken) des Würfels. Jede Vertauschung solcher Diagonalen liefert eine
eindeutige Symmetrie des Würfels. Die orientierungserhlatenden Symmetrien des Wür-
fels entsprechen daher gerade den Permutationen der 4 Diagonalen. Somit gibt es 4! = 24
Symmetrien.

Abbildung 1.1: Symmetrieachsen des Würfels

Wir werden sehen, dass jede (endlich erzeugte) Gruppe die Symmetriegruppe eines geo-
metrischen Objekts ist. Zur Erinnerung wiederholen wir hier einige wesentliche Defini-
tionen im Kontext von Gruppen. Wir gehen jedoch davon aus, dass Ihnen diese bekannt
und auch vertraut sind.

Definition 1.1.2 (Gruppen). Eine Gruppe (G, ·) ist eine Menge G mit einer
Verknüpfung · : G×G→ G, sodass für alle a, b, c ∈ G gilt:

1. Die Verknüpfung „·“ ist assoziativ : a · (b · c) = (a · b) · c.

2. Es existiert ein neutrales Elementa 1 ∈ G mit 1 · a = a · 1 = a.

3. Es existieren Inverse a−1 ∈ G mit a−1 · a = a · a−1 = 1.

Eine Teilmenge H von G heißt Untergruppe, falls H bzgl. der Einschränkung der
Verknüpfung · auf H × H eine Gruppe ist und H bezüglich der eingeschränkten
Verknüpfung abgeschlossen ist. Letzteres ist genau dann der Fall, wenn für alle
g, h ∈ H auch g · h−1 ∈ H ist. Wir schreiben dann H ≤ G.
aWir schreiben 1 für das neutrale Element in einer Gruppe um es nicht mit den vielen Kanten

in diversen Graphen zu verwechseln, die wir im Laufe des Kurses betrachten werden.

Beispiel 1.1.3. Einige erste Beispiele von Gruppen sind:

1. Die ganzen, rationalen und reellen Zahlen (Z,+) ≤ (Q,+) ≤ (R,+) jeweils mit
Addition als Verknüpfnug.
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2. Die (multiplikativen) Einheitengruppen (R∗, ·) und (C∗, ·).

3. Für n ∈ N ist die symmetrische Gruppe Sym(n), gegeben durch die Menge der
Permutationen

{f : {1, . . . , n} → {1, . . . , n} | f bijektiv}

mit der Verknüpfung „◦“, der Komposition von Abbildungen. Allgemeiner bezeich-
ne mit Sym(X) für eine beliebige (auch unendliche) Menge X die symmetrische
Gruppe über X, d.h. die Gruppe der Bijektionen von X auf X bzgl. der üblichen
Verknüpfung von Abbildungen.

4. Die Menge Z2 = {(m,n) | m,n ∈ Z} ist Gruppe bezüglich der komponentenweisen
Verknüpfung

(m,n) · (m′, n′) := (m+m′, n+ n′).

Definition 1.1.4 (Homomorphismus). Seien (G, •) und (H, ◦) Gruppen. Eine
Abbildung φ : G→ H heißt Homomorphismus, falls für alle g1, g2 ∈ G gilt:

φ(g1 • g2) = φ(g1) ◦ φ(g2).

Ein Homomorphismus heißt Isomorphismus, wenn er bijektiv ist. Existiert ein
Isomorphismus zwischen G und H, so schreiben wir G ∼= H und sagen, dass diese
Gruppen isomorph zueinander sind.

Für einen Homomorphismus φ gilt φ(1G) = 1H .
Ein Homomorphismus φ : G→ H ist genau dann ein Isomorphismus, wenn ein inverser
Homomorphismus φ−1 : H → G existiert, sodass gilt:

φ−1 ◦ φ = idG und φ ◦ φ−1 = idH .

Beispiel 1.1.5. Wir betrachten einige Beispiele zu Homomorphismen:

1. Die Abbildung φ : (Z,+) → (Z,+) : z 7→ n · z ist für alle n ∈ N ein Homomor-
phismus. Sie ist genau dann ein Isomorphismus, wenn n = 1.

2. Die Abbildung ψn : (Z,+) → (Z,+) : z 7→ n+ z ist für kein n ∈ N ein Homomor-
phismus.

3. Die Abbildung exp : (R,+) → (R>0, ·) : t 7→ et ist Isomorphismus mit log als
inverse Abbildung.

4. Für Untergruppen H ≤ G ist die Inklusionsabbildung i : H ↪→ G ein Homomor-
phismus.

Eins der ersten schönen Resultate, das man ohne viel Theorie beweisen kann, ist der
Satz von Cayley.
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Theorem 1.1.6 (Satz von Cayley). Jede Gruppe ist isomorph zu einer Unter-
gruppe einer symmetrischen Gruppe.

Beweis. Sei G eine beliebige Gruppe. SetzeH := Sym(|G|) (siehe Beispiel 1.1.3 3), wobei
G als Menge aufgefasst wird. Definiere eine Abbildung

ψ : G→ H durch g 7→ fg,

wobei die Abbildung fg definiert ist durch fg(x) := g · x für alle x ∈ G. Dann gilt für
alle g, h ∈ G, dass

ψ(gh)(x) = fgh(x) = (gh) · x = g · (h · x) = fg(fh(x)) = (fg ◦ fh)(x).

Es gilt also fg ◦ fh = fg·h. Die inverse Abbildung zu fg ist fg−1 . Das neutrale Element in
H ist die Identitätsabbildung auf G, die das Bild des neutralen Elements eG ∈ G unter ψ
ist. Wie oben gezeigt, ist ψ : G→ H also ein Gruppenhomomorphismus. Angenommen,
es gelte ψ(g) = feG für ein g ∈ G. Das impliziert g · h = h für alle h ∈ H. Also ergibt
sich g = eG und deshalb auch, dass ψ injektiv ist.

Um alle Elemente einer (unendlichen) Gruppe zu beschreiben, genügen manchmal end-
lich viele Elemente und deren Verknüpfungen.

Definition 1.1.7 (Erzeugendensystem). Sei G eine Gruppe und S ⊆ G eine
Teilmenge.

1. Die von S erzeugte Untergruppe ⟨S⟩ ist die kleinste Untergruppe von G, die
S enthält.

2. Die Menge S heißt Erzeugendensystem von G, wenn G = ⟨S⟩ gilt.

3. Die Gruppe G heißt endlich erzeugt, wenn eine endliche Teilmenge S ⊆ G
existiert, die G erzeugt. Wir nennen G k-erzeugt, wenn es ein k-elementiges
Erzeugendensystem für G gibt.

Die leere Menge ∅ erzeugt die triviale Gruppe {1}.

Wir schreiben manchmal 1 statt {1} für die triviale Gruppe (und missbrauchen dabei
ein kleines bisschen die Notation).

Beispiel 1.1.8. Die Gruppe (Z,+) ist endlich erzeugt. Erzeugendensysteme sind zum
Beispiel die Menge {1} oder {2, 3} oder beliebige andere Teilmengen mit denen sich die
1 schreiben lässt. Die Gruppe (Q,+) oder auch (R,+) ist dagegen nicht endlich erzeugt.
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Definition 1.1.9 (Diedergruppen). Für alle n ∈ N≥3 bezeichnen wir die Symme-
triegruppe eines regulären n-Ecks als (endliche) Diedergruppe Dn.
Das bedeutet, dass Dn die Menge aller Isometrien f : R2 → R2 ist, die die Ecken-
menge eines in R2 eingebetteten, regulären n-Ecks auf sich selbst abbildet. Die
Diedergruppe Dn hat 2n Elemente.

Abbildung 1.2 zeigt verschiedene n-Ecke mit Spiegelungsachsen (türkis und lila). Die
gelben Pfeile illustrieren die möglichen Rotationen um den Mittelpunkt m des n-Ecks
um Vielfache des Winkels 2π

n
.

Abbildung 1.2: n-Ecke mit Spiegelungsachsen und Rotationen

Lemma 1.1.10. Alle Diedergruppen Dn, n ∈ N≥3, sind 2-erzeugt.

Beweis. Sei Pn ein reguläres n-gon mit Zentrum m. Eine Diagonale in Pn ist eine Gerade
durch m und eine Ecke v von Pn.
Sei v nun eine fest gewählte Ecke und sv die Spiegelung an der Diagonalen durch m und
v. Weiter sei ρ die Rotation um m mit Winkel 2π

n
. Wir zeigen, dass Dn von der Menge

S = {sv, ρ} erzeugt wird.
Sei f ein beliebiges Element aus Dn. Dann bildet f die Ecke v auf eine Ecke f(v) ab.
Es existiert dann ein k ∈ Z mit f(v) = ρk(v), d.h. f(v) is Bild von v unter k-fachem
Anwenden von ρ. Bezeichne nun mit u einen der Nachbarn von v in Pn.

Abbildung 1.3: Spiegelung von u durch sv.
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Für das Bild von u unter f gibt es zwei Möglichkeiten. Ist ρk(u) = f(u), dann ist f = ρk,
da f ◦ρ−1 die Kante {u, v} und somit das n-Eck fixiert. Andernfalls, wenn ρk(u) ̸= f(u),
ist ρk ◦ sv(v)︸ ︷︷ ︸

=v

= f(v) und ρk ◦ sv(u)︸ ︷︷ ︸
̸=u

= f(u) und somit f = ρk ◦ sv.

In beiden Fällen lässt sich f mit ρ und sv ausdrücken. Da f beliebig gewählt war erhalten
wir Dn = ⟨{sv, ρ}⟩.

1.2 Neue Gruppen aus alten

Um möglichst interessante Beispiele betrachten und vielfältige Gruppen untersuchen zu
können, brauchen wir Methoden zur Konstruktion sowie zur Darstellung von Gruppen.
Eine Möglichkeit ist es, neue Gruppen aus bereits bekannten Gruppen zu „bauen“. Dieses
Kapitel behandelt die wesentlichen solcher Konstruktionen.

Definition 1.2.1 (Faktorgruppe). Sei N eine normale Untergruppen in G (abge-
kürztN ⊴ G). Dann ist die Menge aller Nebenklassen gN vonN inG eine Gruppe,
genannt Faktorgruppe oder Quotient von G bezüglich N , notiert mit G/N .

Proposition 1.2.2. Sei nun N ⊴ G. Dann hat G/N bezüglich der Projektion
π : G→ G/N mit g 7→ gN folgende universelle Eigenschaft:
Für alle Gruppen H und für alle Homomorphismen φ : G → H mit N ⊆ ker(φ)
existiert genau ein Homomorphismus φ̄ : G/N → H mit φ ◦ π = φ̄.

Die Aussage in Proposition 1.2.2 sagt gerade, dass das Diagramm in Abbildung 1.4
kommutiert.

G H

G/N

φ

π
∃! φ̄

⟲

Abbildung 1.4: Kommutatives Diagramm zur universellen Eigenschaft von Faktorgrup-
pen von G bezüglich einer normalen Untergruppe N .

Definition 1.2.3 (Direktes Produkt). Sei I eine Indexmenge und (Gi)i∈I eine
Familie von Gruppen. Das direkte Produkt

∏
i∈I Gi ist die Gruppe, die als Grund-

menge das karthesische Produkt der Gruppen Gi hat und als Verknüpfung die
komponentenweise Verkettung gegeben durch

((gi)i∈I , (hi)i∈I) 7→ (gi · hi)i∈I .
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Das direkte Produkt zweier Gruppen ist eine Erweiterung des zweiten Faktors durch den
ersten im Sinne von Definition 1.2.5. Nicht jede Erweiterung ist ein direktes Produkt.

Definition 1.2.4 (Semidirektes Produkt). Seien N und Q Gruppen und sei
φ : Q → Aut(N) ein Homomorphismus. Das semidirekte Produkt von Q mit N
bezüglich φ ist die Gruppe N ⋊φ Q, die als Grundmenge N × Q hat und deren
Verknüpfung gegeben ist durch

((n, p), (m, q)) 7→ (n φ(p)(m), pq),

wobei φ(p) ∈ Aut(N) gilt.

Diedergruppen lassen sich zum Beispiel als semidirekte Produkte schreiben, siehe dazu
Übungsaufgabe 6.1.1.

Definition 1.2.5 (Gruppenerweiterung). Es seien zwei Gruppen Q und N gege-
ben. Eine Gruppe G is eine Erweiterung von Q durch N wenn es eine injektive
Abbildung ι : N ↪→ G und eine surjektive Abbildung π : G ↠ Q gibt, sodass
folgende Sequenz exakt ist:

1 → N ↪→
ι
G↠

π
Q→ 1.

Das kartesische Produkt G×H mit der Inklusionsabbildung ι : H ↪→ G×H und
der Projektion π : G ×H ↠ G bezeichnen wir auch als triviale Erweiterung von
G durch H.

Lemma 1.2.6. Sei G eine Erweiterung von Q durch N . Dann gilt

1. N ist ein Normalteiler von G.

2. Q ist isomorph zum Quotienten G/N .

Spezielle Klassen von Erweiterungen sind die oben eingeführten direkten und semi-
direkten Produkte. Eine Erweiterung G von Q ist genau dann ein semi-direktes
Produkt, wenn ein Homomorphismus ϕ : Q→ G mit π ◦ ϕ = 1Q existiert.

1.3 Gruppenwirkungen und Graphen

In diesem Kapitel präzisieren wir die Idee von Gruppen als Mengen von Symmetrien
und führen dazu Gruppenwirkungen ein.
Hierzu betrachten wir bestimmte Räume und ihre Automorphismengruppen, also ihre
Symmetrien. Beispiele solcher Räume sind Graphen, metrische Räume, Vektorräume,
Simplizial- oder polyedrische Komplexe, Mannigfaltigkeiten oder topologische Räume.
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Wir werden uns in diesem Kapitel auf Graphen und im Speziellen auf sogenannte Cay-
leygraphen konzentrieren. Das sind Räume, die einer Gruppe zugeordnet werden können,
auf denen die Gruppe selbst wirkt und die somit die Struktur der Gruppe beschreiben.

Definition 1.3.1 (Gruppenwirkung). Sei G eine Gruppe und X ein Raum1. Eine
Wirkung von G auf X ist ein Homomorphismus λ : G → Aut(X). Abkürzend
schreiben wir G λ↷ X oder nur G↷ X.

Bemerkung 1.3.2.

1. Eine Wirkung ist also eine Familie (fg)g∈G von Automorphismen fg : X → X,
wobei für alle g, h ∈ G gilt:

fg ◦ fh = fgh und feG = idX .

2. Wir können eine Wirkung auch als Abbildung

G×X → X

(g, x) 7→ g.x

schreiben, wobei für alle g, h ∈ G und für alle x ∈ X gilt:

(gh).x = g.(h.x) und eG.x = x.

Wir werden diese Betrachtungsweisen austauschbar verwenden.

Beispiel 1.3.3. Schauen wir uns einige Beispiele für Gruppenwirkungen an.

1. Jede beliebige Gruppe G hat auf jedem Raum X die triviale Wirkung, gegeben
durch

G→ Aut(X)

g 7→ idX

für alle g ∈ G. Diese Wirkung ist meist nicht von weiterem Interesse.

2. Die Automorphismengruppe G := Aut(X) eines Raumes X wirkt kanonisch auf
X durch die Identitätsabbildung

idAut(X) : Aut(X) → Aut(X).

Das Konzept der Gruppenwirkungen verallgemeinert also das der Automorphismus-
und Symmetriegruppen.

3. Die Diedergruppe Dn wirkt auf der Menge der Ecken, Kannten und Diagonalen
eines regulären n-Ecks.

1Ein Objekt in einer kleinen Kategorie C, d.h. Mor(X,Y ) ist eine Menge für alle X,Y ∈ Obj(C).

Prof. Dr. Petra Schwer Geometrische Gruppenteorie WS 2025/26 8



4. Für einen festen Drehwinkel wirken die ganzen Zahlen auf dem Einheitskreis durch
Rotation um ganze Vielfache des Drehwinkels.
Sei dazu θ ∈ R . Wir betrachten die Gruppe G := Z und den Raum X := S1 =
{z ∈ C | |z| = 1}. Dann wirkt G auf X durch

f : Z× S1 → S1

(n, z) 7→ e2πθ·n · z,

da (0, z) 7→ z und f(n +m, z) = e2πθ·(n+m) = f(n, f(m, z)) für alle m,n ∈ Z gilt.
Dabei ist 0 = eZ . Die Wirkung entspricht der Rotation um Vielfache des Winkels
2πθ.
Es gilt also Z

f
↷ S1.

5. Die ganzen Zahlen wirken außerdem auf den reellen Zahlen durch Translation.
Wir betrachten also die Gruppe G := Z und den Raum X := R. Dann wirkt G
auf X durch

g : Z× R → R
(n, x) 7→ n+ x,

da (0, x) 7→ x und g(n+m,x) = n+m+ x = n+ g(m,x) = g(n, g(m,x)) für alle
m,n ∈ Z gilt.
Es gilt also Z

g
↷ R.

6. Jede Gruppe wirkt auf verschiedene Weisen auf sich selbst. Die Gruppe G fungiert
dann sowohl als Menge der Symmetrien als auch als Raum. Beispiele sind die
triviale Wirkung sowie die

• Links-Multiplikationswirkung: G↷ G via (g, h) 7→ g · h,
• Konjugationswirkung: G↷ G via (g, h) 7→ ghg−1.

Definition 1.3.4 (Stabilisator und Orbit). SeiG eine Gruppe, die auf einer Menge
X wirkt. Der Stabilisator eines Elements x ∈ X unter G ist die Menge StabG(x)
der Gruppenelemente, die x fixieren, d.h.

StabG(x) := {g ∈ G | g.x = x}.

Der Orbit oder die Bahn G.x eines Elements x ∈ X unter G ist die Menge aller
y ∈ X, sodass ein g ∈ G existiert mit g.x = y, d.h.

G.x := {y ∈ X | ∃ g ∈ G mit g.x = y}.
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Definition 1.3.5 (Eigenschaften von Wirkungen). Eine Wirkung λ einer Gruppe
G auf einer Menge X heißt

1. frei, falls g.x ̸= x für alle x ∈ X und alle g ∈ G \ {1G}.
Eine Gruppenwirkung ist genau dann frei, wenn StabG(x) = {1G} für alle
x ∈ X gilt.

2. treu, falls λ : G→ Aut(X) injektiv ist.
Eine Gruppenwirkung ist genau dann treu, wenn für alle g ∈ G \ {1G} ein
x ∈ X existiert mit g.x ̸= x.

3. transitiv, falls G.x = X für alle x ∈ X gilt.
Eine Gruppenwirkung ist genau dann transitiv, wenn für alle x, y ∈ X ein
g ∈ G existiert mit g.x = y.

Beispiel 1.3.6. Wir überprüfen nun einige der Gruppenwirkungen aus Beispiel 1.3.3
auf ihre Eigenschaften:

1. Die Linksmultiplikationswirkung von G auf sich selbst ist frei, treu und transitiv.

2. Die Konjugationswirkung von G auf sich selbst ist im Allgemeinen weder frei, noch
treu, noch transitiv.

3. Die Rotationswirkung von Z auf S1 um ganzzahlige Vielfache eines Drehwinkels
2πθ mit θ ∈ R ist:

• frei, genau dann, wenn θ ∈ R \Q,

• treu, genau dann, wenn sie frei ist, und

• für alle θ ∈ R nicht transitiv.

4. Die Wirkung der vollen Isometriegruppe Iso(S1) auf S1 ist transitiv aber nicht frei,
da Spiegelungen des Kreises Fixpunkte haben.

Eine wichtige Beispielklasse von Räumen, auf denen wir Gruppenwirkungen betrachten
wollen, sind Graphen. Wir werden Graphen einführen, die uns ein Bild einer Gruppe be-
züglich eines gegebenen Erzeugendensystems liefern: sogenannte Cayley-Graphen. Daher
wiederholen wir hier nochmal in Kürze die wichtigsten Begriffe.

Definition 1.3.7 (Graphen). Ein Graph ist ein Tripel Γ = (V,E, δ) von Mengen
V und E und einer Randabbildung δ : E → {{u, v} | u, v ∈ V }. Die Elemente
v ∈ V nennen wir Ecken und ein e ∈ E heißt Kante von Γ. Die Elemente in δ(e),
dem Bild der Kante e ∈ E unter der Randabbildung, nennen wir auch die Ecken
oder Enden der Kante e.
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Definition 1.3.8 (Gerichtete Graphen). Fixieren wir zu jeder Kante e ∈ E eine
Ordnung auf dem Bild δ(e) = {v1, v2} nennen wir den Graphen gerichtet oder ori-
entiert. Eine Kanten e mit δ(e) = {v1, v2} und Orientierung „v2 vor v1“ schreiben
wir dann üblicherweise als geordnetes Tupel (v2, v1).

Kanten stellen wir üblicherweise als Linie zwischen ihren Ecken dar. Betrachten wir
gerichtete Graphen, so notieren wir die Orientierung als Pfeil auf der Linie, die vom
ersten zum zweiten Element in der Ordnung zeigt.
Wir werden im Folgenden auch oft statt ’Kante e’ einfach das gordnete oder ungeordnete
Paar ihrer Ecken notieren, also (u, v) und {u, v}. Das ist insbesondere dann sinnvoll,
wenn es sich um Graphen ohne Doppelkanten handelt.

Beispiel 1.3.9. Graphen können (ungerichtet) übereinstimmen, sich aber als gerichtete
Graphen voneinander unterscheiden. Die folgenden Graphen sind solche Beipiele:

Definition 1.3.10 (Schleifen und Doppekanten). Sei Γ = (V,E, δ) ein Graph.
Eine Schleife in Γ ist eine Kante e ∈ E mit δ(e) = {v} für ein v ∈ V .
Eine Paar von Kanten e, e′ ∈ E heißt Doppelkante wenn δ(e) = δ(e′).

Definition 1.3.11 (Wege in Graphen). Sei Γ = (V,E, δ) ein Graph.

1. Ein Kantenzug p der Länge n in Γ ist eine Folge von Ecken vi ∈ V, i =
0 . . . n und Kanten ei ∈ E, i = 1 . . . n, sodass für alle i ∈ {1 . . . , n} gilt
δ(ei) = {vi−1, vi}.

2. Wir nennen einen Kantenzug einen Pfad, wenn all seine Ecken paarweise
verschieden sind.

3. Ein Unterkantenzug p′ eines Kantenzugs p ist eine Teilmenge der Ecken
vi und zugehörigen Kanten in p mit Indizes in einer Menge der Form
{i, . . . , k} ⊂ {0, 1, . . . , n}. Es handelt sich um einen Unterpfad wenn p′ selbst
ein Pfad ist.

4. Ein Kreis (oder Zykel) ist ein Kantenzug v0, . . . , vn für den gilt: v0 = vn und
jeder echte Unterkantenzug ist ein Pfad.

Manchmal schreiben wir Kantenzüge manchmal auch nur als Eckenfolge in der aufein-
anderfolgende Ecken durch eine Kante verbunden sind.
Beispiele für die Begriffe in Definition 1.3.11 sind in Abbildung 1.5 zu sehen.
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Abbildung 1.5: Ein Graph mit markiertem Kantenzug, Kreis und Pfad.

Definition 1.3.12 (Bäume). Sei Γ = (V,E, δ) ein Graph. Wir sagen Γ ist simpli-
zial, wenn weder Schleifen noch Doppelkanten in Γ existieren.
Ein Baum ist ein simplizialer Graph ohne Kreise.

Definition 1.3.13 (Ecken-Grad, Blätter). Sei Γ = (V,E, δ) ein Graph.

1. Der Grad einer Ecke ist die Anzahl seiner Nachbarn, d.h. die Anzahl aller
Ecken v′ ̸= v, für die es eine Kante e ∈ E gibt mit δ(e) = {v, v′}.

2. Eine Ecke v ∈ V von Grad 1 nennen wir Blatt.

3. Ein Graph ist regulär, wenn jede Ecke den selben Grad hat.

Lemma 1.3.14 (Charakterisierung von Bäumen). Ein zusammenhängender, sim-
plizialer Graph mit mindestens zwei Ecken ist genau dann ein Baum, wenn es zu
je zwei Ecken genau einen verbindenden Pfad gibt.

Beweis. Siehe Übungsaufgabe 6.1.2.

Definition 1.3.15 (Morphismen von Graphen). Seien zwei Graphen Γ = (V,E, δ)
und Γ′ = (V ′, E ′, δ′) gegeben. Ein Morphismus f : Γ→Γ′ ist ein Paar von
Abbildungen fV : V → V ′ und fE : E → E ′ mit

δ′ ◦ fE = (fV ∗ fV ) ◦ δ.

Ein Isomorphismus ist ein Morphismus f , zu dem ein Morphismus f−1 : Γ′ → Γ
existiert mit

f ′ ◦ f = idΓ und f ◦ f ′ = idΓ′ .

Somit können wir für einen Graphen Γ die Automorphismengruppe Aut(Γ) definieren
und folglich auch Gruppenwirkungen auf Graphen betrachten.
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Definition 1.3.16 (Gruppenwirkungen auf Graphen). Sei G eine Gruppe und sei
Γ = (V,E, δ) ein Graph. Eine Wirkung von G auf Γ ist ein Homomorphismus
λ : G→AutΓ.

Bemerkung 1.3.17. Etwas konkreter sehen Wirkungen auf Graphen wie folgt aus:

1. Eine Wirkung von G auf Γ ist durch eine Familie (fg)g∈G von Automorphismen
von Γ gegeben, die durch Gruppenelemente indiziert ist und für die gilt:

• Für alle g ∈ G ist fg = (fV
g , f

E
g ) mit fV

g : V → V und fE
g : E → E.

• Beide Abbildungen erfüllen die Gleichungen aus 1 in Bemerkung 1.3.2.

Zusätzlich gilt: Für eine Kante e ∈ E mit δ(e) = {u, v} gilt

δ(fE
g (e)) = {fV

g (u), fV
g (v)}.

Das nennen wir auch „Verträglichkeit mit der Randabbildung“.

2. Als Abbildungen geschrieben haben wir ein Paar

λV : G× V −→ V : (g, v) 7−→ g.v = λV (g)(v), und
λE : G× E −→ E : (g, e) 7−→ g.e = λE(g)(e),

wobei die Eigenschaft 2 aus Bemerkung 1.3.2 gilt.
Zusätzlich ist für eine Kante e ∈ E mit δ(e) = {u, v} das Bild der Randabbildung
wie folgt gegeben:

δ(λE(g)(e)) = {λV (g)(u), λV (g)(v)}.

Definition 1.3.18 (Freie Wirkungen auf Graphen). Eine Wirkung von G auf
Γ = (V,E, δ) heißt frei, wenn λE und λV frei sind. Das heißt, wenn für alle
g ∈ G \ {eG} gilt:

(i) Die Abbildung λV (g) ist fixpunktfrei, d.h. für alle v ∈ V ist (λV (g))(v) ̸= v.

(ii) Die Abbildung λE(g) ist inversionsfrei, d.h. für alle e ∈ E ist (λE(g))(e) ̸= e.

Wie bereits angedeutet, kann es hilfreich sein, eine Gruppe selbst als Raum aufzufassen
bzw. ihr einen Raum zuzuordnen, auf dem sie wirkt. Hierzu wollen wir nun einer Gruppe
einen Graphen zuordnen, den sogenannten Cayleygraphen. Diese Zuordnung geschieht in
Abhängigkeit von der Wahl eines Erzeugendensystems, ist also nicht eindeutig. Dennoch
können wir diesen Graphen als ein mögliches Bild der Gruppe verstehen, ihn geome-
trisch untersuchen und folglich die Eigenschaften der Gruppe untersuchen, indem wir
die Eigenschaften des Graphen untersuchen.
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Definition 1.3.19 (Cayleygraphen). Sei G eine Gruppe und S ⊆ G ein Erzeu-
gendensystem mit 1G /∈ S.

1. Der (ungerichtete) Cayleygrapha Cay(G,S) von G bezüglich S ist der Graph
mit Eckenmenge V = G und Kantenmenge E = {{g, gs} | g ∈ G, s ∈ S}.

2. Der gerichtete Cayleygraph
#               —

Cay(G,S) von G bezüglich S ist der Graph mit
Eckenmenge V = G und Kantenmenge E = {(g, gs) | g ∈ G, s ∈ S}, wobei
(g, gs) die gerichtete Kante von g nach gs beschreibt. Wir beschriften die
Kante (g, gs) optional mit s.

aCayleygraphen wurden ursprünglich unter dem Begriff Gruppenbild von Max Dehn eingeführt.

Cayleygraphen zu verschiedenen Erzeugendensystemen sind im Allgemeinen verschieden.
Es gibt zu einer Gruppe also mehrere Cayleygraphen. Siehe dazu auch Beispiel 1.3.21.

Bemerkung 1.3.20. Der ungerichtete Cayleygraph Cay(G,S) stimmt nicht in allen Fäl-
len mit dem gerichteten Cayleygraph

#               —

Cay(G,S) mit „vergessener“ Kantenorientierung
überein. Betrachte dafür zum Beispiel die Gruppen G mit zwei Elementen G = {1G, s}
für die gelte s2 = 1G. Als Erzeugendensystem betrachte einfach die einelementige Menge
S = {s}. Dann sind Cay(G,S) und

#               —

Cay(G,S) verschieden, siehe Abbildung 1.6.

(a) Cay(G,S) (b)
#                —

Cay(G,S)

Abbildung 1.6: Gerichteter und ungerichteter Cayleygraph für G aus Bemerkung 1.3.20.

Beispiel 1.3.21. Unterschiedliche Erzeugendensysteme der ganzen Zahlen Z ergeben
verschiedene (gerichtete) Cayleygraphen.

1. Für das einfachste Erzeugendensystem S = {1} sieht der Cayleygraph einem Zah-
lenstrahl ähnlich. Hier gibt es keine Doppelkanten und Cay(Z, S) stimmt mit dem
zugrundeliegenden Graphen des gerichteten Cayleygraphens

#               —

Cay(Z, S) überein,
siehe Abbildung 1.7a.

2. Für das Erzeugendensystem S = {−1, 1} von Z ergibt sich ein anderes Bild: durch
den zweiten Erzeuger entstehen Doppelkanten, siehe Abbildung 1.7b.

3. Der (gerichtete) Cayleygraph von Z bezüglich S = {2, 3} sieht schon viel kompli-
zierter aus, da sowohl Ecken, die sich um Wert 2 unterscheiden als auch solche mit
Differenz 3 mit einer Kante verbunden werden. Vergleiche dazu Abbildung 1.7c.
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(a)
#                —

Cay(Z, {1}) (b)
#                —

Cay(Z, {−1, 1}) (c)
#                —

Cay(Z, {2, 3})

Abbildung 1.7: Cayleygraphen von Z für verschiedene Erzeugendensysteme.

Beispiel 1.3.22. Hier zwei weitere Beispiele für Cayleygraphen:

1. Betrachte die symmetrische Gruppe G = Sym(3) erzeugt von den elementaren
Transpositionen (1, 2) und (2, 3), die die Einträge 1 und 2 bzw 2 und 3 vertauschen.
Dann ist der Cayleygraph von G bezüglich S = {(1, 2), (2, 3)} ein Sechseck mit
Doppelkanten, siehe Abbildung 1.8.

2. Für eine beliebige Gruppe G ist
#               —

Cay(G,G \ {1G}) der doppelt vollständige Graph
auf |G| Ecken mit Kanten wie in Abbildung 1.9 für g, h ∈ G.

Abbildung 1.8: Der gerichtete Cayleygraph von Sym(3) bezüglich {(1, 2), (2, 3)} mit
gleichfarbigen Doppelkanten. Rote Kanten entsprechen (1, 2) und grü-
ne Kanten entprechen (2, 3).

Abbildung 1.9: Doppelte Kanten im vollständigen Graphen über |G| Ecken.
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Theorem 1.3.23 (Eigenschaften von Cayleygraphen). Sei G eine Gruppe mit
Erzeugendensystem S. Dann gilt:

1.
#               —

Cay(G,S) und Cay(G,S) sind zusammenhängend und schleifenfei.

2.
#               —

Cay(G,S) und Cay(G,S) sind regulär.

3.
#               —

Cay(G,S) und Cay(G,S) sind genau dann lokal endlich (d.h. alle Eckengra-
de sind endlich), wenn S endlich ist.

4.
#               —

Cay(G,S) besitzt genau dann Doppelkanten, wenn (mindestens) ein s ∈ S
mit s−1 ∈ S existiert.

5.
#               —

Cay(G,S) ist genau dann simplizial, wenn S ∩ S−1 = ∅.

Beweis. Diese Eigenschaften folgen leicht aus der Definition der Cayleygraphen und den
genannten Eigenschaften des jeweiligen Erzeugendensystems.

Beispiel 1.3.24 (Linkstranslationswirkung auf Cayleygraphen). Die Linskmultiplika-
tion innerhalb einer Gruppe G induziert eine Wirkung von G auf dem (gerichteten)
Cayleygraphen Cay(G,S) bzw.

#               —

Cay(G,S) durch die Abbildungen

fV
g : V → V

v 7→ gv
und

fE
g : E → E

(u, v) 7→ (gu, gv)

für jedes g ∈ G.
Nach der Konstruktion des Cayleygraphen gilt für (u, v) ∈ E, dass v = u ·s für ein s ∈ S
ist. Somit folgt fV

g (u) = gu und fV
g (us) = gus = gv, die Wirkung ist also wohldefiniert.

Die Wirkung heißt Linkstranslation von G auf Cay(G,S) bzw. auf
#               —

Cay(G,S).

Mit Cayleygraphen haben wir jede endlich erzeugte Gruppe als Symmetriegruppe eines
gerichteten Graphen realisiert:

Theorem 1.3.25 (Jede Gruppe ist Symmetriegruppe ihres Cayleygraphen). Sei
G Gruppe mit beliebigem, endlichen Erzeugendensystem S von G. Dann ist die
Linkstranslationswirkung von G auf

#               —

Cay(G,S) ein Isomorphismus von G nach
Aut(

#               —

Cay(G,S)).

Lassen Sie mich kurz daran erinnern, dass für ein Element g ∈ G die Ordnung von g
definiert ist durch ord(g) := min{n ∈ N | gn = 1G}.

Theorem 1.3.26 (Charakterisierung: freie Linkstranslationswirkung). Sei G von
S erzeugt. Die Linksmultiplikationswirkung von G auf Cay(G,S) ist genau dann
frei, wenn S keine Elemente der Ordnung 2 enthält.
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Beweis. Wir nehmen zunächst an, dass die Wirkung frei sei. Wäre s ∈ S von Ordnung
2, dann fixiert s unter der Linkstranslation die Kante {1G, s} in Cay(G,S) was im
Widerspruch zur Freiheit der Wirkung steht.
Nehmen wir nun umgekehrt an, dass es keine Elemente der Ordnung 2 in S gibt. Seien λV
und λE die von der Linkstranslation induzierten Wirkungen auf V bzw. E in Cay(G,S).
Dann ist λV fixpunktfrei, da die Linkstranslation gerade der Linksmultiplikation in G =
V entspricht. Bleibt zu zeigen, dass λ inversionsfrei ist.
Angenommen, es existiere ein e ∈ E und ein g ∈ G mit Lg(e) := λE(g)(e) = e. Insbeson-
dere ist dann Lg(δ(e)) = δ(Lg(e)) = δ(e). Mit δ(e) = {v, v′} und v′ = vs für ein s ∈ S
folgt, dass {v, v′} = {gv, gv′}.
1. Fall: Ist gv = v, so auch gv′ = v′ und g = 1G, da λV fixpunktfrei wirkt und Cay(G,S)
keine Doppelkanten hat, denn S enthält keine Elemente der Ordnung 2.
2. Fall: Ist gv = v′, so ist gv′ = v, womit gilt:

v = gv′ = g(vs) = (gv)s = v′s = vs2.

Da λV fixpunktfrei auf V wirkt, muss gelten s2 = 1G. Was im Widerspruch zur Annahme
an S steht. Somit ist λE inversionsfrei und die Behauptung folgt.
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