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1 Introduction

With this text we aim to make a short presentation of the three theorems proven by
Serre in his famous paper “Géométrie algébrique et géométrie analytique”, also know as
GAGA [Serre, 1956], which is our main reference.

What does Serre prove in this paper? He awnser very natural questions: if X is an
algebraic variety over C, there is a natural way to think of it as an analytic variety. How
are these two structures related? When is an analytic variety algebraic? And some other
similar questions.

More technically, the idea is to relate coherent sheaves on algebraic varieties to
coherent sheaves on analytic varieties. As, roughly speaking, coherent sheaves encode
the “geometry” of the varieties, its natural to think that if coherent shaves are related,
the geometries must also be related.

In the end, Serre proved that coherent shaves over an algebraic varieties correspond
to coherent sheaves over the same variety considered with an analytic structure, that
they have the same cohomology and that they also have the same morphisms. This is
the content of Theorems 4.1,4.2,4.3.

Among the applications, we have simple proof of a famous and surprising theorem
due to Chow: “every analytic subvariety of the projective space is algebraic”.

This text is organized in 4 sections. Section 2 contains some preliminaries and basic
definitions. We hope that the reader is familiar with most of the concepts written there
and that this section can work as a way of fixing notation. In the end of Section 2, we
present some algebraic results which will be useful in some parts of the text.

Section 3 contains the main constructions necessary to understand GAGA, for ex-
ample the analytic structure of an algebraic variety, the analytic sheaf associated to an
algebraic sheaf, etc. There are also some results which are important in the proofs later,
as the fact that the local ring of holomorphic functions and the one of regular functions
have the same completion.

Section 4 contains the statements and proofs of the three main theorems of the paper
and necessary lemmas.

Section 5, the last one, contains two interesting applications for GAGA: the Chow’s
theorem cited above and the proof that Betti numbers have an algebraic character.

We hope that the it is possible to understand the main ideas behind GAGA and see
that it is not as complicated as some may think!

2 Preliminaries: Sheaves, Analytic Varities and Algebraic Varieties

In this section, we have the goal to present some basic properties and definitions we
are considering and the text. We go through basic definitions of analytic and algebraic
varieties and also basic theory o coherent sheaves. The main references for this part are
[Serre, 1955], [Hartshorne, 1977], [Gunning and Rossi, 1965] and [Movasati, 2021]. Also,
some results are taken directly from Serre’s GAGA [Serre, 1956].
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2.1 Sheaves

Definition 2.1. Let X be a topological space. A presheaf (of abelian groups) F over
X associates to each open subset U ⊂ X an abelian group F (U) such that:

� if V ⊂ U , there is a restriction map ρUV : F (U)→ F (V )

� the restriction maps commute, that is, if W ⊂ V ⊂ U , ρUV ◦ ρVW = ρUW

We denote ρUV (s) = s|UV . In general, we drop U from the notation, being clear from
the context which set we are restricting from.

Definition 2.2. A sheaf F over X is a presheaf over X satisfying:

� if U =
⋃
i∈I Ui and s ∈ F (U) satisfy s|Ui = 0, for all i ∈ I, then s = 0.

� if U =
⋃
i∈I Ui and we have sections si ∈ F (Ui) such that si|Ui∩Uj = sj |Ui∩Uj for

all i, j ∈ I, then there exists a section s ∈ F (U) such that s|Ui = si.

The idea of sheaves is to generalize the concept of spaces of functions. That is the
reason the maps are called restrictions and we ask for those properties. Actually, the
idea is to consider spaces of functions which are determined by local properties, such as
holomorphic functions, C∞ functions, regular functions etc.

Of course, we do not need to be restricted to abelian groups. The same definition
can be made considering rings, vector spaces, modules, etc.

Definition 2.3. A morphism ϕ : F → G of (pre)sheaves is simply a family of morphims
ϕU : F (U)→ G (U) for any open subset U .

We say two sheaves are isomorphic if there exists a morphism between them which
is invertible, that is, each coordinate turns out to be isomorphism. It seems natural to
define monomorphisms and epimorphisms in the same way. Although it will work for
monomorphisms, extra caution is necessary for epimorphisms.

Proposition 2.4. Let ϕ : F → G be a sheaf morphism. Then the presheaf kerϕ defined
by kerϕ(U) = kerϕU is a sheaf.

The same does not hold for the image, that is, the presheaf given by Imϕ defined by
Imϕ(U) = ImϕU is not a sheaf.

In order to deal with this problem, we have a natural a way to contruct sheaves from
presheaves. For this, we need a important concept when working with functions: germs.
We can generalize this idea for any sheaf.

Definition 2.5. Let F be a sheaf over X. For each point x ∈ X, we define the stalk Fx
to be the set of equivalence classes of pairs (s, U) where s ∈ F(U) and (s, U) ∼ (t, V ) if
there is an open subset W ⊂ U ∩ V such that s|W = t|W .

It is easy to prove that the stalks form abelian groups (resp rings, vector spaces etc).
With this in hands we can state the following proposition.

3



Proposition 2.6. Let F be a presheaf. Consider the presheaf F̂ to be

F̂(U) =
∏
x∈U
Fx.

We have a natural morphism τ : F → F̂ given by s 7→ (sx). We define the sheaf
associated to F to be:

F+(U) :=
{
s ∈ F̂(U)

∣∣∣ ∀x ∈ U ∃V 3 x with s|V ∈ Im(τV )
}

This sheaf satisfy a universal property. For any sheaf G and a morphism of presheaves
ϕ, there is a unique morphism of sheaves between F+ and G which makes the diagram

F F+

G

ϕ

τ

comutes.

Now, it is easy to define kernels and cokernels of morphisms of sheaves, taking the
associated sheaf. This gives us a natural definition or kernel, image, epimorphism,
monomorphism and exact sequences. We have:

Proposition 2.7. If F , G, and H are sheaves, we have:

a) ϕ : F → G is an isomorphism (all maps are invertible) if ϕx : Fx → Gx is an
isomorphism for any x ∈ X.

b) 0→ H→ F → G → 0 is exact if and only if 0→ Hx → Fx → Gx → 0 is exact.

We finish this subsection on sheaves defining ringed spaces, which will be the main
objects necessary to define varieties.

Definition 2.8. Let X be a topological space and O be a sheaf of rings over X. We call
the pair (X,O) a ringed space. If the stalks of O are local rings, we call (X,O) locally
ringed space.

A morphism of ringed spaces (X,OX) → (Y,OY ) is a continuous map f : X → Y
togheter with a morphism OY → f∗OX , where the sheaf f∗OX is given by f∗OX(U) :=
OX(f−1(U)).

For locally ringed spaces, we ask the morphsm between the sheaves to preserve the
maximal ideals.

2.2 Algebraic Varieties

Definition 2.9. Let k be an algebraically closed field. We denote kn := Ank and call it
affine space. If k is fixed, we drop k from the notation. We define a topology on An by
declaring the sets given by zeros of polynomials f ∈ k[x1, . . . , xn] to be closed. To get a
structure of ringed space on An, we consider the sheaf O whose stalks Ox are given by
fractions of polynomials P

Q with Q(x) 6= 0. In a open set, we consider the fractions with
non zero denominator in that open set.
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With the affine space in hand, we can define an “affine algebraic variety”: a locally
closed subset X ⊂ An with OX given by restriction of functions from O.

The affine varieties are going to be the models for constructing general algebraic va-
rieties. Notice that it is possible to define morphisms of algebraic varieties by restricting
polynomial maps An → Am and products of algebraic varieties considering the product
embedded on a bigger affine space.

Definition 2.10. A locally ringed space (X,OX) is called an algebraic variety if it
satisfy:

1. There is a finite covering U = {Vi}i∈I of X such that each Vi (with the induced
structure) is isormophic (as locally ringed spaces) to a locally closed subset of an
affine space, ie, an affine variety.

2. The diagonal ∆ ⊂ X ×X is closed.

The most important example is, probably, the projective space:

Definition 2.11. Let Pn be the quotient Cn+1/C× given by projective coordinates [x0 :
· · · : xn]. Then Pn is an algebraic variety via the charts Vi := {xi 6= 0} which are
isomorphic to the affine space. Any subvariety of the projective space is called projective
variety.

Many results about these objects can be proven and the reader can find general
theory in the references cited in the beginning of this section. Through the text, we use
the more common results and hope the reader will be able to find them in the refeences.

The same constructions as above can be made for the analytic case, if we consider
the field to be C and holomorphic functions instead of polynomials.

Definition 2.12. An analytic subvariety X ⊂ Cn is a subset which is locally given
by holomorphic equations, that is, for each point x ∈ X we can find a open set of Cn
(with the usual topology) such that X is given by zeros of holomorphic functions on that
open set. Closed analytic subvarities have a natural sheaf of holomorphic functions given
by restrictions of holomorphic functions on Cn. The sheaf of holomorphic functions is
denoted by HX .

It is important to notice that the local ring of germs HX is notherian (as the ring of
regular functions) and also satisfy a ”nullstelensatz”.

We can define a variety in almost the same way:

Definition 2.13. A locally ringed space (X,HX) is called analytic variety if:

1. There exists an open covering U = {Vi}i∈I of X such that the Vi (taken with the
restriction of the sheaf) are all isomorphic (as locally ringed spaces) to an analytic
subset of Cn.

2. X is Hausdorff.

In the next section, we will see how to associate a structure of analytic variety to
algebraic varieties over C.
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2.3 Coherent Sheaves

A very importante concept on algebraic geometry and complex geometry is the concept
of coherent sheaf. It is actually a way to generalize vector bundles (which can be seen
as sheaves whose stalks are the fibers of the vector bundle).

Definition 2.14. Let (X,OX) be a ringed space. A OX-module F is a sheaf over X
such that, for each U , F (U) has the structure of OX(U)-module.

In the case of an algebraic variety, we call the OX -modules algebraic sheaves and in
the case of an analytic variety, we call the HX -modules analytic sheaves.

Definition 2.15. A OX−module F is said to be of finite type if it is locally finitely
genereted by sections, that is, for each x ∈ X, there exists an open neighborhood x ∈ U ⊂
X and sections s1, . . . , sp ∈ F(U) such that the corresponding germs s1,x, . . . , sp,x ∈ Fx
generate the stalk over OX,x

It is easy to prove that if the sections si generate the stalk in a point, they generate
all stalks of the neighborhood U .

Definition 2.16. A sheaf is called coherent if it is of finite type and, besides that, any
epimorphism OqX → F → 0 has kernel of finite type. In other words, we have, for x ∈ X
and U 3 x and any morphism as above, an exact sequence:

OpX |U → O
q
X |U → F|U → 0.

Some important properties on coherent sheaves include:

Proposition 2.17. We have:

1. If 0→ F → G → H → 0 is an exact sequence with two coherent sheaves, then the
third is also coherent.

2. The kernel, cokernel and the image of a morphism between coherent sheaves is
coherent.

3. The tensor product between two coherent sheaves is coherent.

4. Hom(F ,G)x ∼= Hom(Fx,Gx), where the first space is the stalk of the sheaf associated
to the presheaf U 7→ Hom(F(U),G(U))

For details, see [Serre, 1955]. Some other results may be used through the text.

2.4 Flat Pairs and Completions

In this subsection, we have the goal to present some algebraic results which will be
important to understand GAGA. Most of the facts presented in this subsection come
from the appendix of [Serre, 1956].
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Definition 2.18. Let R be a ring and let A be an R-module. We say that A is R-flat
(or simply flat) if, for any exact sequence:

0→ B → C → D → 0

of R-modules, we have that the sequence:

0→ A⊗R B → A⊗R C → A⊗R D → 0

is also exact.
Notice that, by definition of the Tor functor, this is the same as having Tor(A, •) = 0.
If A ⊂ B is a inclusion of rings, we say that (A,B) is flat pair if the A-module B/A

is flat.

Proposition 2.19. Let A ⊂ B. (A,B) is a flat pair if and only if B is A-flat and one
of the following is true:

(i) For any A-module (of finite type) E, the morphism E → E ⊗A B is injective.

(ii) For any ideal I ⊂ A, we have that I ·B ∩A = I.

Proof. Consider the exact sequence:

0→ A→ B → B/A→ 0.

It induces a long exact sequence after tensoring by E over A:

Tor(A,E)→ Tor(B,E)→ Tor(B/A,E)→ A⊗ E → B ⊗ E

As A⊗ E = E and Tor(A,E) = 0, we get:

0→ Tor(B,E)→ Tor(B/A,E)→ E → B ⊗ E

Now, B/A is A-flat (that is, Tor(B/A,E) = 0) if and only if E → B⊗E is injective
and Tor(B,E) = 0, which show (i).

For condition (ii), we simply take E = A/I.

Lemma 2.20. If A ⊂ B ⊂ C such that (A,C) is flat and (B,C) is flat, then (A,B) is
flat.

Proof. We will use proposition 2.19. First, we show that B is A-flat. Let 0 → E → F
be an injection of A modules. Let N be the kernel of the morphism E⊗AB → F ⊗AB.
As C is B-flat, we have that the sequence

0→ N ⊗B C → (E ⊗A B)⊗B C → (F ⊗A B)⊗B C

is exact.
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Now, using that the tensor product is associative, we get the sequence:

0→ N ⊗B C → E ⊗A C → F ⊗A C.

As C is A-flat, we conclude that N ⊗BC = 0. By 2.19 (i) and the fact that (B,C)
is flat, we conclude that N = 0. This implies B is A-flat.

Condition (ii) is trivial: if I ⊂ A, we have

I ⊂ I ·B ⊂ I · C

and therefore
I = I ∩A ⊂ I ·B ∩A ⊂ I · C ∩A = I,

since (A,C) is a flat pair.

We can now study flatness in the case of local rings and their completions: the case
for which we are going to apply the results presented here. Assume A is local notherian
ring and let m be its maximal ideal.

Let E be a finite generated module over A. Recall that the m-adic topology on E
is the topology for which the submodules mnE form a local basis around 0 ∈ E and
submodules r + mnE form a local basis around any other r ∈ E.

This topology is metrizable and the its completion is denoted by Ê. It has a natural
structure of Â-module with the operations extended by continuity.

We can define a natural morphism E ⊗A Â→ Ê extending the injection E → Ê by
linearity.

Proposition 2.21. With the same notation as above, the morphism E ⊗A Â → Ê is
bijective.

Proof. As E is finitely generated, we can write an exact sequence:

0→ R→ L→ E → 0

where L is a free module of finite rank. As L is notherian, R is also finitely generated.
Tensoring and taking the completions, we get a commutative diagram:

R⊗A Â → L⊗A Â → E ⊗A Â → 0
↓ ↓ ↓
R̂ → L̂ → Ê → 0

As the middle arrow is clearly an isomorphism (L⊗A Â = Âr = Âr = L̂), we conclude
that the right arrow must be surjective.

So the morphism F ⊗A Â → F̂ is surjective for any F . Therefore we have that the
left arrow in the diagram is also surjective. Applying the five lemma, we conclude the
right arrow must be an isomorphism.
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We are now ready to prove the main theorems of this subsection:

Theorem 2.22. Let A be local ring and let Â be its completion. Then the pair (A, Â)
is flat.

Proof. Following proposition 2.19 we first notice that Â is A-flat. Indeed, if 0→ E → F
is an injection, we have that 0→ Ê → F̂ is also an injection. Using the isomorphism of
2.21, we conclude that 0Ê ⊗A Â→ F ⊗A Â→ 0 remains exact and thus Â is A-flat.

In order to finish the proof, we verify assertion (i) from 2.19: E → Ê is injective if
E is finitely generated, but Ê = E ⊗A Â.

Theorem 2.23. Let θ : A → B be a morphism. Then θ extends by continuity to a
morphism θ̂ : Â → B̂. If θ̂ is bijective, then θ is injective and the couple (A,B) (where
A is identified as a subring of B via θ) is flat.

Proof. The assertion that θ is injective is obvious since it is a restriction of θ̂. For the
second part, consider the inclusions A ⊂ B ⊂ C := B̂ = Â. By 2.22, the pairs (A,C)
and the pair (B,C) are flat. It remains to apply 2.20.

The result above apply for quotients of A, that is, if I is an ideal of A and J = θ(I)B
in B, the quotients form a flat pair.

3 Towards the Main Theorems: First relations between Algebraic and
Analytic Varieties

As we introduced last section, algebraic varieties are naturally endowed with the so
called Zariski topology and analytic varieties are equipped with the natural “usual” or
“strong” topology from its charts.

Suppose X is an algebraic variety over C. As affine algebraic varieties are obviously
analytic (since polynomials are holomorphic), we have two topologies over X: the Zariski
topology, from its structure of algebraic variety, and a topology induced from the usual
topology of its affine charts.

As Serre does in his article , we add the letter Z at the beggining of the words when
refering to Zariski topology. For example, Z-open means open in Zariski topology.

3.1 The Analytic Variety associated to an Algebraic Variety

Our goal here is to put a structure of analytic variety in any algebraic variety. The first
step is to establish some results about the Zariski and usual topology of Cn.

Lemma 3.1. The following is true:

a) The usual topology of Cn is stronger than its Zariski topology.

b) All Z-locally closed subsets of Cn are analytic.

9



c) If U and U ′ are two Z-locally closed subsets of Cn and Cm and f : U → U ′ is a
regular map, then f is holomorphic.

d) If, in the above situation, f is an algebraic (birregular) isomorphism, then f is a
biholomorphism.

Proof. We prove each of the assertions separately:

a) As all polynomials are continous in the usual topology, zeros of polynomials, i.e Z-
closed sets, are closed. So, every element of the Z-topology is an element of the usual
topology.

b) If F is Z-locally closed, there is an Z-open subset U of Cn and a regular function
ϕ in U such that F is the zero set of ϕ. As ϕ is regular, for each point of F , ϕ
can be written as quotient of polynomials with non zero denominator. Thus, ϕ is
holomorphic in this neighborhood and F is locally given by its zeros. We conclude
that F is analytic.

c) A regular map f : U → U ′ is simply a polynomial map F : V ⊂ Cn → W ⊂ Cm
restricted to U and U ′, where U and W are Z-open subsets. As all polynomial maps
are holomorphic, and the holomorphic maps on F are restrictions of holomorphic
maps in open sets containg U and U ′, we have the result.

d) Just apply 3 for the inverse.

With this lemma in hands, we can equip any algebraic variety over C with a structure
of analytic variety:

Proposition 3.2. Let X be an algebraic variety over C. There is a unique structure of
analytic variety over X such that, for each affine chart ϕ : V → U from a Z-open subset
of X to a Z-locally closed subset of Cn, ϕ is an analytic isomorphism from V (with the
induced topology) to U (with its natural analytic structure from 3.1b).

Proof. We need to define a topology and a sheaf HX on X. Let X =
⋃
i∈I Vi an affine

covering. Let ϕi be the affine charts.
Notice that if we have two charts ϕ and ψ, the transition maps ϕ ◦ψ−1 are algebraic

isomorphisms and by Lemma 3.1d, they are analytic isomorphisms. This allow us to
make the following definition:

W is open if W ∩ Vi is open for all i

HX,x = Hϕi(Vi),ϕi(x) for x ∈ Vi and HX |Vi = ϕ∗Hϕ(Vi)

where Hϕi(Vi) is the sheaf of holomorphic functions on ϕ(Vi)
Notice that HX is well defined, since it is defined locally. Obviously this induces

analytic chats on X.
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To see that X is Hausdorff, take two points x, y ∈ X. If they are on the same chart,
we can separate them, since Ui is a subset of Cn. Otherwise, recall that, by definition
of algebraic variety, the image Tij of the map Vi ∩ Vj → Ui × Uj , x 7→ (ϕi(x), ϕj(x)) is
Z-closed in Ui × Uj and 3.1a implies that it is closed. So, if x ∈ Vi and y ∈ Vj and both
are not in the intersection, we get that (ϕi(x), ϕj(y)) /∈ Tij . By closedness, it is possible
to find an open set of Ui × Uj that does not intersect Tij . As the usual topology of the
product is the actual product topology, we can find open sets Ai with Vi ⊃ Ai 3 x and
Aj with Vj ⊃ Aj 3 y such that ϕ(Ai)×ϕ(Bi) does not intersect Tij . But not intersecting
Tij means exactly that ∅ = Vi ∩ Vj ∩Ai ∩Aj = Ai ∩Aj .

This shows that X has a structure of analytic variety. The uniqueness follows from
the fact that the identity would induce an biholomorphism, since it is locally a biholo-
morphism (as the structures are the same on the charts) and a global bijection.

From now on, we denote by Xh the analytic variety associated to X by the propo-
sition above. We can also conclued some simple properties of the space Xh from the
definition.

Lemma 3.3. If X is an algebraic variety, Y ⊂ X is a Z-locally closed subset and
f : X → Z is a regular map, we have:

a) (X × Z)h = Xh × Zh

b) Y h is an analytic subvariety of Xh and the anlytic structure of Y h coincides with the
induced structure of Y ⊂ Xh

c) f induces a map from Xh to Y h and this map is holomorphic.

3.2 Local Rings

Now we proceed to the task of relating the algebraic local ring of regular germs on X
and the analytic local ring of holomorphic germs on Xh. Let us denote by OX the sheaf
of regular functions on X and by HX the sheaf of holomorphic functions on Xh.

As all regular functions are holomorphic, we can define a map in the level of germs
θ : OX,x → HX,x. Note that it is not possible to define a morphism of sheaves, since Xh

and X have different topologies! Also, as θ is local, that is, it takes the maximal ideal
of OX,x to the maximal ideal of HX,x (since both are given by functions which are zero

at x), we can extend it to the completions θ̂ : ÔX,x → ĤX,x.

Theorem 3.4. The map θ satisfy the following:

a) The morphism θ̂ is an isomorphism.

b) If Y is a Z-locally closed subset of X, and J = Jx(Y ) is the ideal of germs of regular
functions vanishing on Y , the image θ(J) generates the ideal A = Ax(Y ) of germs of
holomorphic functions vanishing on Y h.

Proof. We divide the proof in two steps. The general case and the case X = Cn.

11



Step 1 Let X = Cn and x = 0. In this case, the first part of the theorem is trivial,
since both the ring of convergent power series (analytic functions) and the ring
of polynomials have the same completion (which is the ring of formal power
series). The map θ is simply the inclusion in this case and, therefore, induces
the identity in the completion.

For the second part, we fix the notation I = 〈θ(J)〉 and let f ∈ A be any
holomorphic function. By the holomorphic Nullstelesatz, we know f r ∈ I for
some r > 0, since V (I) = V (A) =⇒

√
I = A. Passing to the completion:

f r ∈ Î = I · ĤX,x = J · ÔX,x = Ĵ

Now, using that J is radical and that Ĵ is also radical (since we are working over
excellent rings), we conclude that f r ∈ Ĵ =⇒ f ∈ Ĵ . Thus, f ∈ HX,x ∩ Ĵ =

HX,x ∩ Î = I. We conclude I = A.

Step 2 For the general case, as the situation is local, we can assume that HX,x =
HCn,0

A

and that OX,x =
OCn,x

J for some ideal J and A. As, locally, functions on X are
restrictions of functions on the affine space, we conclude that the map θ = θX
for X is the map η = θCn after passing to the quotient. Using step 1, we get
that η̂ is an isomorphism and η(J) generates A and, therefore, η̂(Ĵ) = Â. Now,
since

ĤX,x =
ĤCn,0

Â

and

ÔX,x =
ÔCn,x

Ĵ

we have that θ induces an isomorphism (both ideals and rings are the same
above!).

The second part follows from the fact that the ideal of a subvariety Y is simply
the image of the ideal of Y as a subvariety of Cn when we pass to the quotient.

Corollary 3.5. θ is injective.

Corollary 3.6. The rings OX,x and HX,x have the same dimension. Therefore, the
analytic dimension is the same as the algebraic dimension.

Corollary 3.7. The pair (OX,x,HX,x) is flat.
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3.3 Zariski Topology, Strong Topology and Morphisms

We start this section by stating some topological results relating the two topologies of
X. After we will try to see when we can say that an analytic morphism is algebraic.

Proposition 3.8. Let X be an algebraic variety and U ⊂ X a Z-open and Z-dense
subset of X. Then U is dense in Xh

Proof. Let Y = X − U . If U was not dense, we would be able to find y ∈ Y and a
neighborhood V 3 y such that V ⊂ Y . This would mean that, at the point y, the local
rings HY,y and HX,x are isomorphic. In particular, we would have Ax(Y ) = 0. Using
Corollary 3.5, this would imply that Jx(Y ) ⊂ OX,x is zero. But this would mean that
U is not Z-dense: a contradiction.

Proposition 3.9. X is complete if and only if Xh is compact.

This proof is a consequence of the Chow’s lemma, which can be found on [Hartshorne, 1977].
After these topological facts, we state a strong theorem relating analytic and regular

maps. We know, of course, that not all holomorphic maps are regular. Although, we
can find nice conditions in which holomorphic maps are actually regular.

Theorem 3.10. Let X and Y be two algebraic varieties and f : X → Y be a bijective
regular map. If f is a biholomorphism from Xh to Y h, then f is a birregular isomor-
phism.

This theorem can be applied immediatly to obtain a criterion for regularity.

Corollary 3.11. Let X and Y be two algebraic varieties and f : Xh → Y h be an
holomorphic map. If the graph T is Z-locally closed in X × Y , then f is a regular
morphism.

Proof. The corollary follows from 3.10. Just consider the composition X → Γ(f) ⊂
X × Y → Y . We have that the second map is regular, as it is the projection. The first
one is an biholomorphism, since it is holomorphic and its inverse is the projection, which
is regular. By the theorem 3.10, the first map is a birregular isomorphism and therefore
the composition is regular.

3.4 Analytification of Sheaves

After explaining how an algebraic variety can be made into an analytic variety, we need
to explain how algebraic sheaves can be turned into analytic sheaves. In less technical
words, we are now going to see how geometric constructions on algebraic varieties can
be transposed to analytic varieties.

Troughout this section, we will omit the letter X from the notation HX and OX ,
writing only H and O.
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Definition 3.12. Let i : Xh → X be the continous mapping given by the identity map
(see 3.1) and let F be an algebraic sheaf (O-module). We define the analytification of
F to be the sheaf

Fh = i∗F ⊗i∗O H,

where i∗F represents the pullback of the sheaf F :

i∗F(U) = colim
V⊃i(U)
V open

F(V ).

Notice that every algebraic morphism ϕ : F → G of algebraic sheaves induces an
analytic morphism:

ϕ : Fh → Gh

between the analytifications (simply using that i∗ and the tensor product are funtors).
This means that the analyticfication is a functor.

Proposition 3.13. The functor F 7→ Fh satisfies:

a) F 7→ Fh is exact.

b) For any F , the morphism α : i∗F → F induced by the inclusion i∗O ↪→ H is injective.

c) If F is an algebraic coherent sheaf, Fh is an analytic coherent sheaf.

Proof. a) Let

0→ A′ → A→ A′′ → 0

be an exact sequences of sheaves over X.

Since i∗ preserves the stalks, it preseves exactness.

Now, by 3.7, Hx is a flat Ox module and, therefore:

0→ (i∗A′)x ⊗
Ox

Hx → (i∗A)x ⊗
Ox

Hx → (i∗A′′)x ⊗
Ox

Hx → 0

is exact, as desired.

b) Consider the sequence:
0→ i∗(O)→ H

At level of stalks:

0→ Ox → Hx →
Hx
Ox
→ 0

By 3.7 we have that Hx
Ox

is a flat Ox-module. Therefore Tor
(
Fx,

Hx
Ox

)
= 0. Thus, the

sequence above is exact after tensoring with Fx. This implies i∗F → Fh is injective.
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c) For this part, assume F is coherent as an O-module. Than, for each x ∈ X, there
exists numbers p, q such that

Op → Oq → F → 0

is exact in a Z-neighborhood U of x.

By part a and the fact that the analytification of O is H, we get an exact sequence:

Hp → Hq → Fh → 0

As the Zariski topology is weaker then the usual topology, we conclude that Fh is
coherent.

Besides that, the functor also comutes with the extension by zeros:

Proposition 3.14. Let Y be a Z-closed subvariety of X and F be a sheaf over Y . The
sheaves (Fh)X and (FX)h are naturally isomorphic, where FX is the extension of F by
zeros to X.

Proof. We just need to check the fact in the stalks. We have, for x /∈ Y , that both sheafs
have zero stalks. It suffices to show that the stalks are isomorphic for x ∈ Y . We have:

(FX)hx = Fx ⊗
OX,x

HX,x

(Fh)Xx = Fx ⊗
OY,x

HY,x

If J = Jx(Y ), we have that OY,x =
OX,x

J . Now, by 3.4b, we have

HY,x =
HX,x

J · HX,x
∼= HX,x ⊗

OX,x

OX,x
J
∼= HX,x ⊗

OX,x

OY,x.

Therefore:

(Fh)Xx
∼= Fx ⊗

OY,x

HY,x ∼= Fx ⊗
OY,x

HX,x ⊗
OX,x

OY,x ∼= Fx ⊗
OX,x

HX,x ∼= (FX)hx.

As every Z-open subset is open, if s is a section in Γ(U,F), s induces a section on
the pullback (in this case, as i(U) = U is Z-open, i∗F(U) = F(U). Therefore, s⊗ 1 is a
section in Γ(U,Fh). This induces a homomorphism:

ε : Γ(U,F) → Γ(Uh,Fh)
s 7→ s⊗ 1

where we use the notation Uh to stress the fact that we are considering the analytic
structure.
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If we take a finite Z-open covering of X, U = {Ui}, this covering is also a covering
of Xh, which we denote by Uh to stress that they cover different spaces. If we consider
the Cech Complex with respect to this covering we get obvious morphisms defined the
same way as ε in each coordinate:

ε : C(U ,F)→ C(Uh,Fh).

As ε commutes with the coboundary operator δ, we obtain a map in the cohomology
(after passing to the colimit):

ε : Hq(X,F)→ Hq(Xh,Fh).

This morphism ε is functorial, that is, commutes with morphisms F → G. It also
respects long exact sequences of coherent sheaves:

Proposition 3.15. Let
0→ A→ B → C → 0,

be an exact sequence.
If A is coherent, the diagram:

Hq(X, C) ∆−→ Hq+1(X,A)
ε ↓ ε ↓

Hq(Xh, Ch)
∆−→ Hq+1(Xh,Ah)

is commutative for any q.

Proof.

The morphism ε is going to play a very important role. In particular, we are going
to show that it is an isomorphism if X is projective. We left the statements of the three
main theorems and their proofs to the next section.

4 The Three Main Theorems: Proofs

After the constructions and results from last section, we are ready to state and prove the
main theorems. In the following, we assume X is a projective variety, that is, a Z-closed
subset of the projective space Pn

Theorem 4.1. For any coherent algebraic sheaf F over X and any q, the morphism

ε : Hq(X,F)→ Hq(Xh,Fh)

is an isomorphism.

Theorem 4.2. If F and G are two algebraic coherent sheaves, every analytic morphism
Fh → Gh is induced by an unique algebraic morphism F → G.
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Theorem 4.3. For any coherent analytique sheaf M over Xh, there exists a unique (up
to isomorphism) algebraic coherent sheaf for which Fh is isomorphic to M

These theorems show that the theory of algebraic coherent sheaves coincides with
the theory of analytic coherent sheaves. That is, the algebraic geometry and the analytic
geometry of projective varieties over C are the same.

Notice that theorem 1 does not imply that the morphism Hq(X,F) → Hq(X, i∗F)
is an isomorphism. Indeed, if we consider the constant sheaf of rational functions over
X, we have Hq(X,KX) = 0 and Hq(Xh,KX) given by spaces with dimension equal to
the Betti numbers of Xh. Even if KX is not coherent, it is union of coherent sheaves and
thus we would have an isomorphism if Hq(X,F)→ Hq(X, i∗F) was an isomorphism for
F coherent.

4.1 Proof of Theorem 4.1

The proof is based on reducing the theorem to the structural sheaf over Pn. In order to
perform this, we need some results:

Lemma 4.4. Suppose X ⊂ Pn. Let F be a sheaf over X and let Fext be its extension
by zeros to Pn. Then we have:

Hq(X,F) = Hq
(
Pn,Fext

)
and Hq

(
Xh,Fh

)
= Hq

(
Pn, (Fext)h

)
.

Proof. We know that Fext(U) = F(U ∩ X) for any U ⊂ Pn. So, for any covering U
of Pn, we get a covering U ′ of X via intersection. The definition o Fext will give us
bijection:

Cq(U ,Fext) = Cq(U ′,F),

that is well defined in the cohomology.
The well defineteness on the cohomology follows from the fact that this map com-

mutes with the boundary operator (since the operations with sections on Fext and F
are the same) and commutes with the colimit, since if U ≤ V =⇒ U ′ ≤ V ′. The map
of course commutes with restrictions, by definition. We get a morphism:

Hq(Pn,Fext) = Hq(X,F).

Notice that this prove does not use the fact that F is coherent, algebraic or that we
are in Pn. It is valid for any sheaf defined on a closed subset of any topological space.

From now on, we assume X = Pn.

Lemma 4.5. The theorem is valid for the sheaf O.

Proof. In order to compute the cohomologies of the projective space, we can recall basic
facts. The cohomology of O(r) is zero for all q > 0 except for n, in which it has
dimension

(−r−1
n

)
So, for r = 0, we have that all cohomologies are zero, excecpt for the

0th cohomology, which is C.
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In the other hand, the cohomology with coefficients H can be computed via Dolbeaut
cohomology, as we have a resolution:

0→ H→ Ω0,0 ∂̄→Ω0,1 ∂̄→Ω0,2 ∂̄→ . . . .

Since the Dolbeaut cohomology of the projective space is zero for any q > 0, we have
that all cohomologies are zero except for the first, which is given by C.

This shows the cohomology groups are isomorphic (are all zero).

Lemma 4.6. The theorem is valid for the sheaves O(r).

Proof. We proceed by induction on n = dimX. Take any hyperplane E on X given by
a linear homogenous polynomial t. We get an exact sequence:

0→ O(−1)→ O → OE → 0,

where OE is the extension by zeros of the structural sheaf of E and the first map is the
multiplication by t. As O(r) is locally free, tensoring by it preserves exactness. We have:

0→ O(r − 1)→ O(r)→ OE(r)→ 0.

As E is isomorphic to Pn−1, we can apply our induction hypothesis. This implies
that, in the commutative diagram induced by long exact sequences

... → Hq−1(X,OE) → Hq(X,O(r−1)) → Hq(X,O(r)) → Hq(X,OE(r)) → Hq+1(X,O(r−1)) → ...
ε↓ ε↓ ε↓ ε↓ ε↓

... → Hq−1(Xh,Oh
E) → Hq(Xh,O(r−1)h) → Hq(Xh,O(r)h) → Hq(Xh,OE(r)h) → Hq+1(Xh,O(r−1)h) → ...

,

we have that the first and fourth vertical arrows are isomorphisms. By the five lemma,
if the fact is true for O(r − 1), it is true for O(r). We end the proof by observing that,
by Lemma 4.5, the thorem is valid for r = 0, and thus it is true for any r.

Lemma 4.7. Let F be an algebraic coherent sheaf over X. Then there exists an exact
sequence

0→ R→ L → F → 0

of algebraic coherent sheaves with L being isomorphic to O(r)k for some k and r.

Now, to finish the proof, we proceed by inverse induction on q. If q > 2r, all the
cohomology groups are zero, and therefore there is nothing to prove. Now, by 4.7, we
can find an exact sequence

0→ R→ L → F → 0

for which L is a direct sum of O(n). By passing to the long exact sequence:

... → Hq(X,R) → Hq(X,L) → Hq(X,F) → Hq+1(X,R) → Hq+1(X,L) → ...
ε1↓ ε2↓ ε3↓ ε4↓ ε5↓

... → Hq(Xh,Rh) → Hq(Xh,Lh) → Hq(Xh,Fh) → Hq+1(Xh,Rh) → Hq+1(Xh,Lh) → ...
,

To end the proof, we apply the five lemma two times. First, we use that ε5 and
ε2 are isomorphisms by the fact that L is of the form O(r)k and by Lemma 4.6. By
the induction hypothesis, ε4 is also an isomorphism. By the five lemma, ε3 is sujective.
Applying the same argument for R, we can assume ε1 is surjective. Now we apply the
five lemma again to conclude that ε3 is injective. This shows ε3 is an isomorphism and
we finish the proof.
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4.2 Proof of Theorem 4.2

To prove 4.2, we need to define a morphism between the analytification of the sheaf of
morphisms Hom(F ,G)h and the analytic sheaf Hom(Fh,Gh).

Each ϕ ∈ Hom(F ,G)x defines a morphism ϕ(Fh,Gh)x for any point x ∈ X. So, we
get a map

m : i∗Hom(F ,G)→ Hom(Fh,Gh),

which extends to a map:

m : Hom(F ,G)h → Hom(Fh,Gh).

Lemma 4.8. The morphism m is an isomorphism.

Proof. As F is coherent, we have that the sheaf Hom and the stalks commute, in the
sense that

Hom(F ,G)x = Hom(Fx,Gx).

This can be seen using the fact coherent sheaves are locally genereated by sections.
By the fact that Fh is also coherent, we get

Hom(Fh,Gh)x = Hom(Fx ⊗Hx,Gx ⊗Hx)

The lemma, therefore, reduces to show that the natural map

mx : Hom(Fx,Gx)⊗Hx → Hom(Fx ⊗Hx,Gx ⊗Hx)

is an isomorphism.
Indeed, as Hx is Ox-flat (3.7), we have that mx is an isomorphism. This is purely

algebraic. If E and F are A-modules, with E of finite type, and B is A-flat, we have
that HomA(E,F )⊗A B ∼= HomB(E ⊗A B,F ⊗A B). Indeed, this follows by writing the
sequence L1 → L0 → E → 0, that exists because E is finitely generated. We have the
following exact sequences:

0→ Hom(E,F )⊗B → Hom(L0, F )⊗B → Hom(L1, F )⊗B

(by applying Hom, which is left exact and then the functor ⊗, which is exact for A-flat
modules), and

0→ Hom(E ⊗B,F ⊗B)→ Hom(L0 ⊗B,F ⊗B)→ Hom(L1 ⊗B,F ⊗B).

As the fact is trivial for free modules, we get the fact for E.
Applying this to Fx, we conclude the proof.

Now we can finish the proof. Denote A = Hom(F ,G) and B = Hom(Fh,Gh). Con-
sider the morphism ε : H0(X,A) → H0(Xh,Ah) ∼= H0(Xh,Bh), where the last isomor-
phism is given by m.

Theorem 4.2 consists in the assertion that ε is an isomorphism. Although, theorem
4.1 (which can be applied since A is coherent) says exactly that.
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4.3 Proof of Theorem 4.3

In order to prove 4.3, we need two important results which are versions of Cartan’s A
and B theorems. It is not trivial to obtain this versions from the usual ones stated for
Stein manifolds. Although, the idea is the same as the one from algebraic geometry,
where one uses the fact that coherent sheaves have vanishing cohomology over affine
varieties.

Theorem 4.9 (Cartan’s A Theorem). Let M be an analytic coherent sheaf over Pr.
Then there exists an integer n0 such that for n ≥ n0 and for all x ∈ Pr, the module
M(n)x is generated by global sections, that is, by elements from H0(Pr,M(n)).

Theorem 4.10 (Cartan’s B Theorem). Let E be an hyperplane of Pr and let A be
an analytic coherent sheaf over E. Then there exists an n0 such that, for n ≥ n0 we
have Hq(Eh,A(n)) = 0 for all q > 0.

With this two results in hands, we can proceed to the proof 4.3. First, we adress
the uniqueness of the sheaf F . Suppose we had another sheaf G such that Fh ∼= Gh by
a morphism γ. From 4.2, we have that γ is induced by a unique morphism ϕ : F → G.
We can write the exact sequence

0→ A→ F ϕ→G → B → 0

where A is the kernel of ϕ and B is its cokernel.
By 3.13a, we can pass to the analytifications and get the exact sequence

0→ Ah → Fh γ→Gh → Bh → 0.

As γ is isomorphism, we conclude Ah = Bh = 0. By 3.13b, we conclude that A and
B are also 0. This implies ϕ is an isomorphism and show the uniqueness.

For the existence, we first prove that X can be taken to be Pr. Indeed, supposeM is
an analytic sheaf on Y h ⊂ Pr. Extending by zeros, we get a sheaf M̃ on Pr. Now, if we
assume that we have the result for Pr, we can find a sheaf G such that Gh = M̃. Now,
restricting this sheaf to Y (which is possible since the sheaf G has stalks zero outside Y ,
we get a sheaf F for which F̃ = G. By 3.14, we conclude that Fh = M as we wanted to
show.

So assume X = Pr. By 4.9, we have thatM(n) is a quotient of the free sheaf Hp for
some p. After tensoring, we obtatin that M is a quotient of H(−n)p. If we denote by
L0 the sheaf O(−n)p, we have an exact sequence:

0→ R→ L h
0 →M→ 0

By the applying the same argument for R, we obtain another algebraic sheaf L1 of
the form O(−m)k and an exact sequence

L h
1 → L h

0 →M→ 0. (∗)
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By 4.2, the first map of the sequece above is induced by a morphism f : L1 → L0

between algebraic sheaves. Now, we define F := coker(f).
This yelds a sequence

L1 → L0 → F → 0.

As the analytification is an exact functor (3.13a), we obtain a sequence

L h
1 → L h

0 → Fh → 0,

which, togheter with (∗) shows that Fh = M , as desired.

5 Applications: Chow’s Theorem and Betti Numbers

In this section we show two important applications of GAGA theorems. The Chow’s
theorem, which state that any analytic subvariety of Pn is in fact a projective algebraic
variety and we also show that Betti numbers, which are topological invariants of analytic
varieties, have an algebraic character. This last result can be applied to a conjecture of
Weil about varieties over fields of algebraic numbers.

5.1 Betti Numbers

Before Serre’s article, Weil conjectured the following:

Theorem 5.1. Let V be a smooth projective algebraic varieity over a field of algebraic
numbers K. All complex variety X obtained from V by extending K to C have the same
Betti Numbers, no matter what extension is chosen.

The content of this result is actually the fact that the topology of the variety over C
is strongly restricted by the algebraic structure over K.

We now state a lemma which will be essencial to prove 5.1.

Lemma 5.2. Let σ : C→ C be a field automorphism. σ obviously induces a morphism
Pr → Pr via [t0 : · · · : tr] 7→ [σ(t0) : · · · : σ(tr)]. Let X ⊂ Pr be smooth a projective
variety and Xσ be the image of X by the morphism induced by σ. We have that Xσ is
smooth and bk(X) = bk(X

σ).

Proof. First, notice that Xσ is smooth by the Jacobian criteria. Indeed, if f ∈ I(X),
we have that f ◦ σ−1 ∈ I(Xσ). As σ−1 is an automorphism, it will take det(Jac(X)) to
det(Jac(Xσ)) and if one is non zero the other is non zero also.

For the second part, we consider the analytifications of X and Xσ and use the Hodge
decomposition to write:

bk(X) =
∑
p+q=k

hp,q(X) and bk(X
σ) =

∑
p+q=k

hp,q(Xσ)

where hp,q(X) = dimHq(Xh,Ωp(X)h) and the same for Xσ.
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By 4.1, we can write hp,q(X) = dimHq(X,Ωp(X)), where Ωp(X) is the sheaf of
algebraic differential forms of degree p.

In the algebraic context, it is easy to see that any regular algebraic form ω on an
Z-open set of X induces a regular algebraic form ωσ on a Z-open set on Xσ. This induces
an isomorphism on the Cech complex that goes to the cohomology. Therefore, we get
that Hq(X,Ωp) ∼= Hq(Xσ,Ωp) and, therefore, hp,q(X) = hp,q(Xσ). By the formulas
above, the Betti numbers are the same.

The proof of the theorem is now a simple consequence of this lemma:

Proof of 5.1. Consider two extensions K → C. They differ by an automorphism of C.
In other words, the two varieties obtained are of the form X and Xσ for some σ.

Now, lemma 5.2 finishes the proof.

5.2 Chow’s Theorem

Another very important application of GAGA is the famous Chow’s Theorem. It can be
stated as below:

Theorem 5.3. Let X ⊂ Pn be a closed analytic subvariety. Then X is algebraic.

This surprising result was first proven by Chow in his paper [?] from 1949, using
more explicit methods. It’s equally surprising that, via GAGA, it is almost trivial:

Proof. Consider the sheaf HX , the structural sheaf of X, whose extension by zeroes is
coherent over Pn. By 4.3, there exists an algebraic sheaf F such that F h = HX . Now,
by 3.13b, we have that the supports of F and F h are the same. But we know that the
support of an algebraic coherent sheaf is always Z-closed. That means that X is Z-closed
and it finishes the proof.

This can be extended to any algebraic variety:

Theorem 5.4. If X is an algebraic variety, any compact analytic subvariety of X is
algebraic.

We present a nice application of these results:

Theorem 5.5. Let f : X → Y be a holomorphic map between a algebraic varieties with
X compact. Then f is a regular morphism.

Proof. Let T be the graph of f . As X is compact and T can be realized as image of X,
T is also compact. As f is holomorphic, T is an analytic subvariety of X × Y . By 5.4,
we conclude that T is algebraic. But this implies that f is regular by 3.11.
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6 Final Considerations

We hope that this text is able to give the reader at least the main ideas on why GAGA
is true and the main techniques Serre used on his paper.

Another application Serre gives include the relationship between algebraic and an-
alytic fibrations. Also, we omitted some proofs, speacially for known facts in order to
make the text more concise.

This results can be generalized to the language of schemes, which was not avaible to
Serre when he wrote his paper. For details, it may be useful to look at [Grothendieck, 1985].

Although we hope our text is understandable, we strongly recommend the reader to
take a look at Serre’s [Serre, 1956]. That paper is almost completely self contained and
all the proofs are very clear.

Enjoy GAGA!
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de l’institut Fourier, 6:1–42.

23


	Introduction
	Preliminaries: Sheaves, Analytic Varities and Algebraic Varieties
	Sheaves
	Algebraic Varieties
	Coherent Sheaves
	Flat Pairs and Completions

	Towards the Main Theorems: First relations between Algebraic and Analytic Varieties
	The Analytic Variety associated to an Algebraic Variety
	Local Rings
	Zariski Topology, Strong Topology and Morphisms
	Analytification of Sheaves

	The Three Main Theorems: Proofs
	Proof of Theorem 4.1
	Proof of Theorem 4.2
	Proof of Theorem 4.3

	Applications: Chow's Theorem and Betti Numbers
	Betti Numbers
	Chow's Theorem

	Final Considerations
	References

