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Severi Varieties

Let X be a smooth projective surface over C. For L ∈ Pic(X), let
VX,L,g ⊂ |L| be the Severi variety consisting of integral curves C ∈ |L|
of geometric genus g.

Expected behavior: A general member C ∈ VX,L,g “should” have
exactly

δ = pa(L)− g =
(KX + L)L

2
+ 1 − g

nodes. The expected dimension of VX,L,g is

dim |L| − δ = dim |L| − (pa(L)− g)
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Severi Varieties on K3 Surfaces

Let X be a projective K3 surface (KX = OX and H1(OX) = 0).
For a big and nef L ∈ Pic(X), VX,L,g has the expected dimension

dim |L| − (pa(L)− g) = g

If VX,L,g ̸= ∅, then every irreducible component of VX,L,g has the
expected dimension g.
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Non-emptiness of VX,L,g

(Chen [Che99]) For a very general polarized K3 surface (X,L) over
C, every m ∈ Z+ and 0 ≤ g ≤ pa(mL), VX,mL,g ̸= ∅.

(Bogomolov-Tschinkel [BT05], Hassett [Has03], Tayou [Tay18])
VX,L,0 ̸= ∅ for infinitely many L ∈ Pic(X) on a projective K3 surface
X if either X is elliptic or |Aut(X)| = ∞.

(Bogomolov-Hassett-Tschinkel [BHT11]) VX,L,0 ̸= ∅ for infinitely
many L ∈ Pic(X) on a projective K3 surface X if X has genus 2 and
rankPic(X) = 1.
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Non-emptiness of VX,L,g

(Li-Liedtke [LL11]) VX,L,0 ̸= ∅ for infinitely many L ∈ Pic(X) on a
projective K3 surface X if rankPic(X) odd.

(Chen-Gounelas-Liedtke [CGL19a], Chen-Gounelas [CG20]) For
every g ≥ 0, VX,L,g ̸= ∅ for infinitely many L ∈ Pic(X) on every
projective K3 surface X over C.

Conjecture. VX,L,g ̸= ∅ for every projective K3 surface X over C,
every very ample L ∈ Pic(X) and 0 ≤ g ≤ pa(L).
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Irreducibility of Severi Varieties on K3 surfaces

Conjecture. For a general polarized K3 surface (X,L) and all
1 ≤ g ≤ pa(L), VX,L,g is irreducible.

True if δ = pa(L)− g is “small”.
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Irreducibility of Severi Varieties of Plane Curves

(Harris [Har86]) The Severi variety Vd,g of plane curves of genus g is
irreducible.

Harris’ proof consists of two parts

Easy: Vd,0 is irreducible and the monodromy group of

Wd,0 = {(C, p) : C ∈ Vd,0 and p ∈ Csing}

over Vd,0 is the full symmetric group.

Hard: Vd,0 ⊂ V for every irreducible component V of Vd,g.
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Irreducibility of Severi Varieties on K3 surfaces

If we mimic Harris’ proof, we need to do

Hard: VX,L,1 is irreducible and the monodromy group of

WX,L,1 = {(C, p) : C ∈ VX,L,1 and p ∈ Csing}

over VX,L,1 is the full symmetric group.

Easy: VX,L,1 ⊂ V for every irreducible componet V of VX,L,g and all
g ≥ 1 [Che19].
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Irreducibility of Severi Varieties on K3 surfaces

(A. Bruno and M. Lelli-Chiesa [BLC21]) For a general polarized K3
surface (X,L), VX,L,g is connected for all 1 ≤ g ≤ pa(L) and is
irreducible for all pa(L) ≥ 5 and g ≥ 4.

New techniques:
1 Induction from large g to small g.
2 Derive “irreducibility” from “connectedness”.
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Connectedness and Irreducibility

Let V be a variety. Then

V is connected

V is Cohen-Macaulay

V is smooth in codimension 1

 Hartshorne’s Connectedness
===============⇒ V is irreducible

Let V = ∪Vi for irreducible components Vi of V . For Vi ̸= Vj, since V
is smooth in codimension 1, codimV(Vi ∩ Vj) ≥ 2. By Harshorne’s
Connectedness,

V\
⋃
i ̸=j

(Vi ∩ Vj)

is connected.
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Moduli Stack of Stable Maps to K3 Surfaces

For a polarized K3 surface (X,L), let

MX,L,g = {f : C → X stable map of genus g, f∗C ∈ |L|}

be the moduli stack of stable maps of genus g to X and let

MX,L,g = ρ−1(VX,L,g)

under the map ρ : MX,L,g → |L| sending [f : C → X] to f∗C ∈ |L|.

The morphism ρ : MX,L,g → VX,L,g is one-to-one, onto and birational.
But it is NOT an isomorphism.

VX,L,g is connected/irreducible if and only if MX,L,g is.
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Tangent Space of MX,L,g

The Zariski tangent space to MX,L,g at [f : C → X] is

Ext([f ∗ΩX → ΩC],OC) = H0(Nf )

with obstruction

Ext2([f ∗ΩX → ΩC],OC) = H1(Nf )

for Nf = coker(TC → f ∗TX).
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Dimension of MX,L,g

If f ∗ΩX → ΩC is surjective, Nf ∼= KC and

dim[f ]MX,L,g ≤ h0(Nf ) = g

By Arbarello-Cornalba [AC81, Lemma 1.4], for [f ] ∈ MX,L,g general,

dim[f ]MX,L,g ≤ h0(Nf /(Nf )tors) ≤ g.
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MX,L,g is a local complete intersection

(Twisted Family) Let Y/∆ be a smooth family of complex K3
surfaces over the unit disk ∆ = {|t| < 1} such that Y0 = X and Yt is a
complex K3 surface with Pic(Yt) = 0 for t ̸= 0.

We fix a closed embedding ρ : C ↪→ P = Pn such that H1(ρ∗TP) = 0.
Let W be the connected component of the Hilbert scheme
Hilb(P × Y/∆) containing [Γ] for Γ = (ρ× f )(C) ⊂ P × Y0.
Then W is smooth over MX,L,g of dimension

dimW ≤ dimMX,L,g + h0(ρ∗TP) = g + h0(ρ∗TP)

Also
dimW ≥ χ(Nρ×f ) + dim∆ = g + h0(ρ∗TP)

So W is a local complete intersection of dimension g + h0(ρ∗TP).
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Smooth locus of MX,L,g

So MX,L,g is a local complete intersection of dimension g.

If f ∗ΩX → ΩC is surjective (f is unramified), MX,L,g is smooth at [f ].

If f is unramified outside of a double point,

Nf ∼= KC(−p)⊕Op

and h0(Nf ) = g. Hence MX,L,g is smooth at [f ].
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Singularities of MX,L,g and VX,L,g

(Work in progress) For a general polarized K3 surface (X,L) over C
and every 1 ≤ g ≤ pa(L), fixing g − 1 general points p1, p2, ..., pg−1
on X, every curve C ∈ |L| of (geometric) genus g passing through
p1, p2, ..., pg−1 has at least pa(L)− g − 1 nodes, where
pa(L) = (L2 + 2)/2 is the arithmetic genus of L.

(Chen [Che02]) All rational curves in |L| are nodal for a general
polarized K3 surface (X,L).
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Singularities of MX,L,g and VX,L,g

Corollary. MX,L,g is smooth in codimension one.

Corollary. MX,L,g is a normal local complete intersection.

Corollary. The codimension one singular locus of VX,L,g is cuspidal.

Corollary. MX,L,g and VX,L,g are connected if and only if they are
irreducible.
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Degeneration to Bryan-Leung K3

Let π : X → ∆ be a one-parameter family of K3 surfaces of genus n
over the unit disk ∆ = {|t| < 1} such that X0 is a Bryan-Leung K3
surface with Picard group generated by C and F with intersection
matrix [

−2 0
0 1

]
The main advantage to work with these K3 surfaces is that the linear
system |C + nF| breaks up into

H0(X0,C + nF) = H0(X0,C)⊗ Symn H0(X0,F)

That is, every curve R ∈ |C + nF| is

R = C + F1 + F2 + ...+ Fn

for some Fi ∈ |F|.
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Degeneration to Bryan-Leung K3

We fix g − 1 general sections of X/∆ and let P be the union of these
sections.
Suppose that there is a family f : C /∆ → X/∆ of stable maps of
genus g, after a possible base change, such that Ct is smooth,
f∗Ct ∈ |Lt| and f (Ct) contains Pt for t ∈ ∆.
It suffices to prove that f (Ct) has at worst a cusp for t ̸= 0. Suppose
that

f∗C0 = C + m1F1 + m2F2 + ...+ mg−1Fg−1 + mgFg

+ n1G1 + n2G2 + ...+ n24G24

where G1,G2, ...,G24 are 24 nodal rational curves in |F| and
F1,F2, ...,Fg are smooth members in |F|.
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Local Deformation Theory

(Ran, Caporaso-Harris) Let X be the 3-fold in ∆4
xyzt given by xy = tα

for some positive integer α and let Y ⊂ X be a flat family of curves in
X such that Y0 = C1 ∪ C2 is a union of two smooth curves

C1 ⊂ R1 = {x = t = 0} and C2 ⊂ R2 = {y = t = 0}

with each Ci tangent to the curve

D = {x = y = t = 0}

in Ri with multiplicity m ∈ Z+ at the origin. Suppose that the total
δ-invariant of Yt is m − 1 for t ̸= 0. Then

Yt is nodal for t ̸= 0, and

α is divisible by m.
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