
Quivers, Flow Trees, and Log Curves

Hülya Argüz

University of Georgia

Hodge Theory, Mirror Symmetry and Physics of Calabi-Yau Moduli
University of Heidelberg, 15 June 2023

Hülya Argüz Quivers, Flow Trees, and Log Curves 1 / 40



Plan of the talk

Algebra: Quiver Donaldson–Thomas (DT) Invariants
The attractor flow tree formula (calculating quiver DT invariants via
tropical geometry)

Geometry: Counts of log curves in toric varieties
From quivers to toric varieties
Log Gromov–Witten (GW) invariants of toric varieties
Calculating log GW invariants tropically

Quiver DT invariants ←→ log GW invariants of toric varieties
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Quivers

Definition
A quiver is a finite oriented graph Q = (Q0, Q1, s, t).

Q0: set of vertices.
Q1: set of arrows.
s : Q1 → Q0 maps an arrow to its source.
t : Q1 → Q0 maps an arrow to its target.

1 3

Q0 = {1, 2, 3}

2
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Representations of Quivers

Definition
A representation of a quiver is an assignement of

a vector space Vv , for each vertex v ∈ Q0, and
a linear transformation fij ∈ HomC(Vs(e), Vt(e)) for each edge e ∈ Q1.

Dimension of a quiver representation is a vector

γ = (γi)i∈Q0 ∈ N+,

where N := ZQ0 and N+ = NQ0 \ {0}, encoding dimensions of the
vector spaces assigned to vertices.

2 31

Dimension (1, 2, 1)

V2 = C2V1 = C V3 = C
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Representations of Quivers

There is a natural notion of morphisms/isomorphisms between two
quiver representations (fij) and (gij):
▶ automorphisms hi : Cγi → Cγi such that gij = fij ◦ hi .

Definition (King’s notion of stability)
V : quiver representation of dimension γ ∈ N+.
M := Hom(N,Z) and MR = Hom(N,R) = M ⊗ R
θ ∈ γ⊥ := {θ ∈ MR, θ(γ) = 0} ⊂ MR: stability parameter.

V : θ-stable if ∀{0} ⊊ V ′ ⊊ V we have θ(dim(V ′)) < 0.
V : θ-semi-stable if ∀V ′ ⊊ V we have θ(dim(V ′)) ≤ 0.

Mθ
γ : Moduli space of θ semi-stable quiver representations of Q

dimension γ.
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Quiver DT invariants
“In nice cases” (when Mθ

γ : smooth) we define quiver DT invariants
as the topological Euler characteristics:

DT θ
γ := e(Mθ

γ) =
∑

k
(−1)k dim Hk(Mθ

γ ,C) .

Piecewise constant dependence on θ ∈ γ⊥: wall-crossing, universal
wall-crossing formula (Kontsevich-Soibelman).

M
in
= Hom (N , IR) = IRQ◦

€ 0
WALL &÷
.

CHAMBER
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Example

Example
Q: n-Kronecker quiver
V : representation with γ := dim(V ) = (1, 1) ∈ N
θ = (θ1,−θ1) ∈ γ⊥ ⊂ MR.

V
ξ2

ξn

ξ1

θ1 > 0 and (ξ1, . . . , ξn) ̸= 0 =⇒ V is θ semi-stable, Mθ
γ
∼= CPn−1

θ1 < 0 =⇒ Mθ
γ = ∅.
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Quivers with potentials

Path algebra CQ: C-linear combinations of paths in Q with
concatenation product.

wv

CQ = Cv ⊕ Ce ⊕ Cw
e v 2 = v , w 2 = w

ev = we = e
Potential W ∈ CQ : Formal linear combination of oriented cycles.

a b

c

Acyclic Quiver

W = 0 W = 2abc + 5(abc)2

Not allowed!

We assume quivers do not have oriented two-cycles.
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The trace function

For (Q, W =
∑

λcc) define the trace function

α1 α2

αn

fα2

fαn

fα1

C

C2

C

C
Tr(c)θ

γ :Mθ
γ → C

V = ((Vi)i∈Q0 , (fα)α∈Q1) 7−→ Tr(fαn◦. . .◦fα1)

Tr(W )θ
γ =

∑
c

λcTr(c)θ
γ

Cθ
γ : Critical locus of Tr(W )θ

γ ⊂Mθ
γ .

“In nice cases” (Mθ
γ smooth and Tr(W )θ

γ Morse-Bott)

Ωθ
γ := e(Cθ

γ ) =
∑

k
(−1)k dim Hk(Cθ

γ ,C) .
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The (general) definition of DT invariants
Definition
For (Q, W ): quiver with potential, γ ∈ N+, and θ ∈ γ⊥ ⊂ MR, the
Donaldson–Thomas (DT) invariant Ωθ

γ ∈ Z for ((Q, W ), γ, θ) is defined
by

Ωθ
γ = e(Cθ

γ , ϕTr(W )θ
γ
ICMθ

γ
)

ICMθ
γ
: intersection cohomology sheaf on Mθ

γ

ICMθ
γ

is a perverse sheaf (Mθ
γ smooth =⇒ ICMθ

γ
is the constant sheaf

with stalk Q)
ϕTr(W )θ

γ
: vanishing cycle functor for the function Tr(W )θ

γ

ϕTr(W )θ
γ
ICMθ

γ
: sheaf on the critical locus Cθ

γ ⊂ Mθ
γ

We will work with rational DT invariants given by

Ωθ
γ :=

∑
γ=kγ′

k∈Z≥1,γ′∈N+

(−1)k−1

k2 Ωθ
γ′

See Kontsevich–Soibelman, Joyce–Song, Reineke, Davison–Meinhardt
Hülya Argüz Quivers, Flow Trees, and Log Curves 10 / 40



Ex: Ωθ
γ can generally be very complicated

The 3-Kronecker quiver appears in N = 2, 4d SU(3) super
Yang-Mills theory1

1

1

1

3

3

3

−6

−6

−613

13 18 68 68

68

683

−84

399

399

465

γ2

γ1
(0, 0)

Figure: Values of Ωθ
γ for the 3-Kronecker quiver

1Galakhov–Longhi–Mainiero–Moore–Neitzke, “Wild wall crossing and BPS giants.”
Journal of High Energy Physics 2013.
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Why are refined DT invariants of quivers interesting?

# Coherent sheaves in CY3’s # Special Lagrangians in CY3’s

Geometric DT theory

DT invariants of quiver representations

Supersymmetric quantum mechanics

Supersymmetric ground states # BPS particles/black holes
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DT invariants from a “simple” set of invariants

Is there a primitive set of DT invariants from which
we could determine all DT invariants?

Yes! We calculate quiver DT invariants using wall structures and flow
trees, from simpler (attractor) DT invariants.

H. Argüz, P. Bousseau: The flow tree formula for Donaldson–Thomas invariants of
quivers with potentials, Compositio Mathematica 158 (12), 2206-2249, 2022
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A simple set of DT invariants: attractor DT invariants
Let {s1, . . . , s|Q0|} be a basis for N. Define a skew symmetric form
⟨−,−⟩ on N by

⟨si , sj⟩ := aij − aji .

where aij is the number of arrows from i to j .
Fix γ ∈ N. The chamber containing ⟨γ,−⟩ ∈ γ⊥ ∈ MR is an attractor
chamber for γ (generally not γ-generic).

Definition (Alexandrov–Pioline, Mozgovoy–Pioline, Kontsevich–Soibelman)
Let θ ∈ γ⊥ ⊂ MR be a small perturbation of ⟨γ,−⟩ which is γ-generic.
Define the attractor DT invariants by Ω⋆

γ := Ωθ
γ .

Ω⋆
γ do not depend on the stability

parameter θ, and are generally
much simpler to compute. θ

⟨γ,−⟩
γ⊥ ⊂ MR ∼= R3

Figure: An attractor chamber

θ

⟨γ,−⟩
γ⊥ ⊂ MR ∼= R3

Figure: An attractor chamber
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The attractor DT invariants

Theorem (Bridgelanda)
aGeneralizations for some non-acyclic quivers: Lang Mou, arXiv:1910.13714

If Q is acyclic then

Ω⋆
γ =

{
1 if γ = (0, . . . , 0, 1, 0, . . . , 0)
0 otherwise

Conjecture (Beaujard–Manschot–Pioline, Mozgovoy–Piolinea)
aProven for the local P2 by Bousseau–Descombes–Le Floch–Pioline, arxiv:2210.10712

KS : local del Pezzo (canonical bundle over a del Pezzo surface S)
Q: quiver, with the additional data of a potential functions W s.t.
DbRep(Q, W ) ∼= DbCoh(KS), then Ω⋆

γ = 0, unless either
γ = (0, . . . , 0, 1, 0, . . . , 0) =⇒ Ω⋆

γ = 1 or γ is a multiple of a class of
a point, in which case Ω⋆

γ equals the Euler characteristic of S.
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Attractor flows (Kontsevich-Soibelman arXiv:1303.3253)
(Q, W ): quiver with potential
γ ∈ N+, and θ ∈ γ⊥, γ-generic.
Iterative application of the Kontsevich-Soibelman wall-crossing
formula:

Ωθ
γ =

∑
γ=γ1+···+γr

1
|Aut((γi)i)|

F θ
r (γ1, . . . , γr )

r∏
i=1

Ω⋆
γi .

where
|Aut((γi)i)| is the order of the group of permutation symmetries of
the decomposition γ = γ1 + · · ·+ γr , and
The coefficients F θ

r (γ1, . . . , γr ) are sums of contributions from
attractor trees with leaves decorated by γ1, . . . , γr and with root at θ:

F θ
r (γ1, . . . , γr ) =

∑
T∈T θ

γ1,...,γr

F θ
r ,T (γ1, . . . , γr )

M. Kontsevich, Y. Soibelman: “Wall-crossing structures in Donaldson–Thomas
invariants, integrable systems and mirror symmetry”. In Homological mirror symmetry
and tropical geometry (pp. 197-308), Springer, 2014
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Attractor trees

Attractor trees are in particular tropical trees – they satisfy the
“tropical balancing condition” (weighted directions around edges add
up to zero)
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The flow tree formula

Theorem (Flow tree formula (A-Bousseau))
(Q, W ): quiver with potential
γ ∈ N+, and θ ∈ γ⊥, γ-generic.

Ωθ
γ =

∑
γ=γ1+···+γr

1
|Aut((γi)i)|

F θ
r (γ1, . . . , γr )

r∏
i=1

Ω⋆
γi .

where
F θ

r (γ1, . . . , γr ) ∈ Q are described concretely in terms of binary trees.
Binary attractor trees are perturbations
of the (generally non-binary) atttactor
trees with roots at θ.
Conjectured by Alexandrov-Pioline.
Proof uses wall structures.
A variant of this formula is proven by
Mozgovoy using operads.
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The coefficients F θ
r (γ1, . . . , γr)

For (Q, W ), let γ = γ1 + · · ·+ γr ∈ N+. (repetitions allowed!)
Simplifying assumption for now: {γ1, . . . , γr} is a basis for N.

F θ
r (γ1, . . . , γr ) :=

∑
Tr

∏
v∈V ◦

Tr

−ϵθ̃
Tr ,v ⟨γv ′ , γv ′′⟩ .

Tr : rooted binary trees with r leaves (decorated by
{γ1, . . . , γr}),
V ◦

Tr
: set of interior vertices of of Tr ,

γv ∈ N is the sum of γi ’s attached to leaves descendant
from v for any v ∈ V ◦

Tr
,

θ̃ is a small generic perturbation of θ in MR

ϵθ̃
Tr ,v ∈ {−1, 0, 1} is a sign defined via “flows” (these signs

control the realizability of Tr as a binary attractor tree with
root at θ̃. ).
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The general case
Generally, for γ = γ1 + . . . + γr , if {γ1, . . . , γr} is not a basis, we
introduce a bigger lattice

N :=
r⊕

i=1
Zei

and consider the map
p : N → N defined by ei 7→ γi

Define a skew-symmetric form η on N by η(ei , ej) := ⟨γi , γj⟩.

γ = (2, 1) = (1, 0) + (1, 0) + (0, 1)

γ1 = γ2 = (1, 0)

γ3 = (0, 1)

e1 = (1, 0, 0)

e1 = (0, 1, 0)
e1 = (0, 0, 1)

In this bigger space we can work with perturbations of attractor trees
into binary trees.
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Example: for Q the n-Kronecker quiver
Q the n-Kronecker quiver
Let θ = (θ1,−θ1) and γ = (1, 1), so that γ1 = (1, 0), γ2 = (0, 1). In
this case, can actually take θ̃ = θ.

F θ
1 (γ1, γ2) = 1

F θ
2 (γ1, γ2) = −ϵθ

T ,v n

T1 T2

v

v ′ v ′′

p(v) parent of v

children of v

γ1 γ2

ev ′ = γ1 ev ′′ = γ2

We have θ1 < 0 =⇒ ϵθ
T ,v = 0 and θ1 > 0 =⇒ ϵθ

T ,v = −1

Ωθ
γ = F θ

1 (γ)Ω∗
γ + F θ

2 (γ1, γ2)Ω∗
γ1Ω

∗
γ2

= 1 · 0− (−1)n
= n
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GOAL: Quivers to Curves

A correspondence between

F θ
r (γ1, . . . , γr )

and counts of rational curves in a toric variety XΣ.
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The toric variety XΣ and enumerative geometry

Fix a quiver Q, a dimension vector γ ∈ N. For any decomposition
γ = γ1 + . . . + γr , we set

Σ : a fan in MR of a smooth projective toric variety XΣ containing
the rays R≥0⟨γi ,−⟩ for all 1 ≤ i ≤ r .
Hi ⊂ Di hypersurfaces defined by {zγprim

i = constant}

Count genus 0 stable maps
(C , {p1, . . . , pr+1})→ XΣ satisfying
▶ pi 7→ Hi for all 1 ≤ i ≤ r
▶ The contact order of the image of pi

with Di is the divisibility of ⟨γi ,−⟩
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Log Gromov–Witten theory

Jun Li: The case D ⊂ X is
smooth. Expand the target;

X 7→ X [1] = X ⨿D P(ND|X ⊕OD)
7→ X [2] = X [1]⨿D P(ND|X ⊕OD)
7→ X [3] = . . .

D D

Gross–Siebert/Abramovich–Chen:
The case D ⊂ X is log smooth.
Record contact orders using
“log structures”

D

p

f(p)

f
C
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Log geometry
Definition
A log structure on X is a sheaf of monoids MX together with a map
α :M−→ (OX , ·) inducing an isomorphism α−1(O×

X ) ≃ O×
X . A log

scheme (X ,MX ) is a scheme with a log structure.

Definition
The ghost sheaf of a log scheme (X ,MX ) is the sheaf of monoids

MX :=MX /α(O×
X ).

Definition
The tropicalization Σ(X ) of a log scheme (X ,MX ) is the cone complex∐

η

(MX ,η)∨
R := Hom(MX ,η,R≥0)/ ∼

indexed by the generic points η of the log strata of X .

Hülya Argüz Quivers, Flow Trees, and Log Curves 25 / 40



Log geometry

Example (The divisorial log structure)
Let D ⊂ X be a divisor, and j : X \ D → X . Define
M(X ,D) := j∗(O×

X\D) ∩ OX , and αX :M(X ,D) ↪→ OX to be the inclusion.

MA1
t ,0 = {h · tn | h ∈ O⋆

A1}.
MA1

t ,0,0
∼= N, via the isomorphism tn 7→ n.

Σ(A1
t )A1

t

Example (The standard log point)
Let X := SpecC, MX := C× ⊕ N, and define αX :MX → C as follows:

αX (x , n) :=
{

x if n = 0
0 if n ̸= 0
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Stable log maps
Let (S,MS) be a log point and let (X ,MX ) be a log scheme over
(S,MS) (in applications, (S,MS) will be either the trivial log point or the
standard log point).

Definition
A stable log map with target X/S is a commutative diagram

(C ,MC ) f //

π

��

(X ,MX )

��
(W ,MW ) // (S,MS)

where (W ,MW ) is a log point, and π : (C ,MC )→ (W ,MW ) is an
integral log smooth curve, such that the underlying map of scheme
f : C → X is a stable map.

The local structure of MC is defined by Fumiharu Kato.
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Combinatorial type of a stable log map

Definition
The combinatorial type τ of a stable log map f : C/W → X/S consists
of:

The dual intersection graph G = GC of C , with set of vertices V (G),
set of edges E (G), and set of legs L(G).
The map σ : V (G)∪ E (G)∪ L(G)→ Σ(X ) mapping x ∈ C (x:generic
point (vertex), nodal point (edge), marked point (leg)) to(
MX ,f (x)

)∨
R.

The contact data up ∈ M∨
X ,f (p) = Hom(MX ,f (p),N) and

uq ∈ Hom(MX ,f (q),Z) at marked points p and nodes q of C .
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Basic monoid

Definition
Given a combinatorial type τ of a stable log map f : C/W → X/S, we
define the associated basic monoid Q by first defining its dual

Q∨
τ =

{(
(Vη)η, (eq)q

)
∈

⊕
η

M∨
X ,f (η) ⊕

⊕
q

N
∣∣∣∣ ∀q : Vη2 − Vη1 = equq

}

where the sum is over generic points η of C and nodes q of C . We then set

Qτ := Hom(Q∨
τ ,N).

Qτ indeed only depends on the combinatorial type of
f : C/W → X/S.
Q∨

τ,R := Hom(Qτ ,R≥0) is the moduli cone of tropical curves of fixed
combinatorial type.
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Basic stable log maps

Given a stable log map f : C/W → X/S, one can show that there is a
canonical map Q → MW , where Q is the basic monoid defined by the
combinatorial type of f .

Definition
A stable log map f : C/W → X/S is said to be basic if the natural map
of monoids Q → MW is an isomorphism.

Theorem (Abramovich–Chen, Gross–Siebert, 2011)
The moduli space M(X/S) of basic stable log maps with target X/S is a
Deligne-Mumford stack.
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Basic stable log maps

For every g ∈ Z≥0, β ∈ H2(X ,Z) and u = (u1, . . . , uk) with ui ∈ |Σ(X )|,
we denote by Mg ,u(X/S, β) the moduli space of genus g basic stable log
maps to X/S of class β and with k marked points of contact data

u = u1, . . . , uk .

Theorem (Abramovich–Chen, Gross–Siebert, 2011)
If X/S is proper, then the moduli space Mg ,u(X/S, β) is a proper
Deligne-Mumford stack.
If X/S is log smooth, then the moduli space Mg ,u(X/S, β) admits a
natural virtual fundamental class [Mg ,u(X/S, β)]virt .
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Counting log maps tropically

Counts of rational log maps in n-dimensional toric varieties

Counts of tropical trees in Rn

We will work with “families” of tropical trees corresponding to log
curves over basic monoids of rank equal to the dimension of the
family!

Nishinou–Siebert: Toric degenerations of toric varieties and tropical curves. Duke
Mathematical Journal, 2006
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Attractor trees to families of tropical curves
Construction of a (d − 2)-dimensional family ρT of tropical curves in
MR from an attractor tree T :
▶ Extend the root of T to infinity to obtain a tropical curve with leaves

constrained to lie in the hyperplanes γ⊥
i .

▶ Deform this tropical curve while preserving the combinatorial type and
the constraints on the leaves.
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The description of N toric
ρT ,H(XΣ).

Lemma (A-Bousseau)
For general constraints H = (H1, . . . , Hr ), the number of genus 0 log
curves in XΣ matching H, and with tropicalization the (d − 2)-dimensional
family of tropical curves ρT , denoted by

Ntoric
ρT ,H(XΣ)

is finite.
• The proof uses a log generic smoothness (Bertini-Sard) theorem

Theorem (A-Bousseau)
The coefficients F θ

r ,T (γ1, . . . , γr ) expressing the contribution to
F θ

r (γ1, . . . , γr ) of an attractor tree T satisfy

F θ
r ,T (γ1, . . . , γr ) = Ntoric

ρT ,H(XΣ) .
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Summary of the proof

Construct a toric degeneration X → A1 of XΣ and of the constraints
H (similar as in Nishinou-Siebert).
Degeneration formula: express the invariants Ntoric

ρT ,H(XΣ) of the
general fibers XΣ as a sums of invariants Ntoric

ρS (X0) of the special
fiber X0, where S are binary trees in MR deforming T .
Show that

Ntoric
ρS (X0) =

∏
v
|⟨γv ′ , γv ′′⟩|

Key technical point: theory of punctured log maps
[Abramovich-Chen-Gross-Siebert] to produce log curves by gluing.
By the flow tree formula,

F θ
r ,T (γ1, . . . , γr ) =

∑
S

∏
v
|⟨γv ′ , γv ′′⟩|
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In progress: enumerative geometry of cluster varieties

A correspondence between quiver DT and
log curves in cluster varieties?
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Cluster varieties and A1 curves
Q, N = ZQ0 =

⊕
i∈Q0 Zsi , MR = Hom(N,R), vi := ⟨si ,−⟩ ∈ M.

▶ Fan in MR containing the rays R≥0vi .
▶ Toric variety X , toric boundary D, components (Di)i∈Q0 .

X : blow-up of X along the codimension two loci (1 + zsi = 0)|Di
.

D: strict transform of D, (X , D): log Calabi-Yau pair.

-

Complement U = X \ D, Poisson cluster variety U =
⋃

(C∗)|Q0| .

M. Gross, P. Hacking and S. Keel, “Birational geometry of cluster algebras,”
Algebraic Geometry, 2, (2015) 137–175.
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Geometry: rational curves in (X , D)

A1-curves: rational curves in X meeting D in a single point.

A1-curves come in (d − 2)-dimensional families, where
d = |Q0| = dim X .
Mβ: compactification of the moduli space of A1-curves of class
β ∈ H2(X ,Z).
GW τ

β : Counts 0-dimensional strata, “maximally degenerate"
A1-curves.
▶ Such counts are punctured log Gromov-Witten invariants of

Abramovich–Chen–Gross–Siebert, counting A1-curves in (X , D) of
class β, with degeneration pattern τ . 2

2Argüz–Gross, The Higher Dimensional Tropical Vertex, Geometry & Topology 26
(5), 2135-2235
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Quiver-cluster
Algebra: Ωθ

γ of the quiver Q are Euler characteristics of moduli spaces
of θ-stable representations of Q of dimension γ.
Geometry: GW τ

β of the cluster variety (X , D) attached to Q are
counts of “maximally degenerate A1-curves in (X , D) of class β.

Theorem (A-Bousseau)
Assume that the DT attractor invariants of Q are trivial. Then, there
exists an explicit correspondence β → γ, such that∑

τ

GW τ
β = Ωθ

γ .

where the sum is over all curves whose tropicalization have type τ ,
containing one marked leg, tracing out a subspace of MR containing θ.

This is compatible with the previous quiver DT-toric log GW
correspondence, the cluster variety (X , D) degenerates to the toric
variety (X , D), and the log GW invariants are related.
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Heuristic picture of the proof.
U = X \ D admits a Lagrangian torus fibration with base MR.
Counts GW τ

β of A1-curves in (X , D) are computed by tropical curves
in MR.
MR is also the space of stability parameters for DT invariants and the
same tropical curves describe the wall-crossing behavior of DT
invariant DT θ

γ !

U = ✗ ID

↓

↑

MIR

space of
stability parameters
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